L(s) = 1 | + (−1.34 − 0.436i)2-s + (1.52 − 0.816i)3-s + (1.61 + 1.17i)4-s + (−0.602 + 0.348i)5-s + (−2.41 + 0.431i)6-s + (0.795 − 1.37i)7-s + (−1.66 − 2.28i)8-s + (1.66 − 2.49i)9-s + (0.962 − 0.205i)10-s + (2.37 + 1.36i)11-s + (3.43 + 0.470i)12-s + (−4.76 + 2.75i)13-s + (−1.67 + 1.50i)14-s + (−0.636 + 1.02i)15-s + (1.24 + 3.80i)16-s − 5.65·17-s + ⋯ |
L(s) = 1 | + (−0.951 − 0.308i)2-s + (0.882 − 0.471i)3-s + (0.809 + 0.586i)4-s + (−0.269 + 0.155i)5-s + (−0.984 + 0.176i)6-s + (0.300 − 0.520i)7-s + (−0.589 − 0.807i)8-s + (0.555 − 0.831i)9-s + (0.304 − 0.0649i)10-s + (0.715 + 0.412i)11-s + (0.990 + 0.135i)12-s + (−1.32 + 0.763i)13-s + (−0.446 + 0.402i)14-s + (−0.164 + 0.264i)15-s + (0.311 + 0.950i)16-s − 1.37·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.791 + 0.610i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.791 + 0.610i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.742676 - 0.253136i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.742676 - 0.253136i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.34 + 0.436i)T \) |
| 3 | \( 1 + (-1.52 + 0.816i)T \) |
good | 5 | \( 1 + (0.602 - 0.348i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.795 + 1.37i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.37 - 1.36i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (4.76 - 2.75i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 5.65T + 17T^{2} \) |
| 19 | \( 1 - 0.963iT - 19T^{2} \) |
| 23 | \( 1 + (-3.28 - 5.69i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.85 - 1.64i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.69 + 6.40i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6.25iT - 37T^{2} \) |
| 41 | \( 1 + (0.931 + 1.61i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.99 + 1.73i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.85 + 6.67i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 2.54iT - 53T^{2} \) |
| 59 | \( 1 + (4.62 - 2.66i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.93 - 4.58i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.95 + 3.43i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 3.68T + 71T^{2} \) |
| 73 | \( 1 - 2.83T + 73T^{2} \) |
| 79 | \( 1 + (-2.87 + 4.98i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.74 + 3.31i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 2.98T + 89T^{2} \) |
| 97 | \( 1 + (1.24 - 2.16i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.66702673473994531238952445891, −13.39513652513261198998576543838, −12.17191399222121318615344336683, −11.21324480270749118581905264935, −9.692148190626114705223404215515, −8.948149587374605967982285121504, −7.48668813279105744966084957247, −6.95109993138513701164004883467, −3.93334731717163109013865403712, −2.04116080153799008088038296487,
2.57014684954820428635206915791, 4.85663134523370781838398484345, 6.79504590041498687806396072087, 8.193867575294066097225624339531, 8.880465908744216968842542154310, 9.992085852300930481645130156985, 11.13082072871743772722909188224, 12.46192828103001619322008529334, 14.13694678763154232469931892792, 15.01767830975755357782350099009