L(s) = 1 | + (−1.34 − 0.436i)2-s + (1.52 − 0.816i)3-s + (1.61 + 1.17i)4-s + (−0.602 + 0.348i)5-s + (−2.41 + 0.431i)6-s + (0.795 − 1.37i)7-s + (−1.66 − 2.28i)8-s + (1.66 − 2.49i)9-s + (0.962 − 0.205i)10-s + (2.37 + 1.36i)11-s + (3.43 + 0.470i)12-s + (−4.76 + 2.75i)13-s + (−1.67 + 1.50i)14-s + (−0.636 + 1.02i)15-s + (1.24 + 3.80i)16-s − 5.65·17-s + ⋯ |
L(s) = 1 | + (−0.951 − 0.308i)2-s + (0.882 − 0.471i)3-s + (0.809 + 0.586i)4-s + (−0.269 + 0.155i)5-s + (−0.984 + 0.176i)6-s + (0.300 − 0.520i)7-s + (−0.589 − 0.807i)8-s + (0.555 − 0.831i)9-s + (0.304 − 0.0649i)10-s + (0.715 + 0.412i)11-s + (0.990 + 0.135i)12-s + (−1.32 + 0.763i)13-s + (−0.446 + 0.402i)14-s + (−0.164 + 0.264i)15-s + (0.311 + 0.950i)16-s − 1.37·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.791+0.610i)Λ(2−s)
Λ(s)=(=(72s/2ΓC(s+1/2)L(s)(0.791+0.610i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.791+0.610i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :1/2), 0.791+0.610i)
|
Particular Values
L(1) |
≈ |
0.742676−0.253136i |
L(21) |
≈ |
0.742676−0.253136i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.34+0.436i)T |
| 3 | 1+(−1.52+0.816i)T |
good | 5 | 1+(0.602−0.348i)T+(2.5−4.33i)T2 |
| 7 | 1+(−0.795+1.37i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−2.37−1.36i)T+(5.5+9.52i)T2 |
| 13 | 1+(4.76−2.75i)T+(6.5−11.2i)T2 |
| 17 | 1+5.65T+17T2 |
| 19 | 1−0.963iT−19T2 |
| 23 | 1+(−3.28−5.69i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.85−1.64i)T+(14.5+25.1i)T2 |
| 31 | 1+(3.69+6.40i)T+(−15.5+26.8i)T2 |
| 37 | 1+6.25iT−37T2 |
| 41 | 1+(0.931+1.61i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.99+1.73i)T+(21.5+37.2i)T2 |
| 47 | 1+(−3.85+6.67i)T+(−23.5−40.7i)T2 |
| 53 | 1+2.54iT−53T2 |
| 59 | 1+(4.62−2.66i)T+(29.5−51.0i)T2 |
| 61 | 1+(−7.93−4.58i)T+(30.5+52.8i)T2 |
| 67 | 1+(−5.95+3.43i)T+(33.5−58.0i)T2 |
| 71 | 1−3.68T+71T2 |
| 73 | 1−2.83T+73T2 |
| 79 | 1+(−2.87+4.98i)T+(−39.5−68.4i)T2 |
| 83 | 1+(5.74+3.31i)T+(41.5+71.8i)T2 |
| 89 | 1+2.98T+89T2 |
| 97 | 1+(1.24−2.16i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.66702673473994531238952445891, −13.39513652513261198998576543838, −12.17191399222121318615344336683, −11.21324480270749118581905264935, −9.692148190626114705223404215515, −8.948149587374605967982285121504, −7.48668813279105744966084957247, −6.95109993138513701164004883467, −3.93334731717163109013865403712, −2.04116080153799008088038296487,
2.57014684954820428635206915791, 4.85663134523370781838398484345, 6.79504590041498687806396072087, 8.193867575294066097225624339531, 8.880465908744216968842542154310, 9.992085852300930481645130156985, 11.13082072871743772722909188224, 12.46192828103001619322008529334, 14.13694678763154232469931892792, 15.01767830975755357782350099009