L(s) = 1 | + (−2.78 + 4.38i)3-s + (−8.65 − 14.9i)5-s + (1.18 − 2.05i)7-s + (−11.5 − 24.4i)9-s + (26.1 − 45.2i)11-s + (−6.84 − 11.8i)13-s + (89.9 + 3.70i)15-s − 82.9·17-s − 126.·19-s + (5.72 + 10.9i)21-s + (27.1 + 47.0i)23-s + (−87.4 + 151. i)25-s + (139. + 17.2i)27-s + (106. − 184. i)29-s + (112. + 194. i)31-s + ⋯ |
L(s) = 1 | + (−0.535 + 0.844i)3-s + (−0.774 − 1.34i)5-s + (0.0640 − 0.110i)7-s + (−0.427 − 0.904i)9-s + (0.715 − 1.23i)11-s + (−0.146 − 0.253i)13-s + (1.54 + 0.0636i)15-s − 1.18·17-s − 1.53·19-s + (0.0594 + 0.113i)21-s + (0.246 + 0.426i)23-s + (−0.699 + 1.21i)25-s + (0.992 + 0.123i)27-s + (0.681 − 1.18i)29-s + (0.649 + 1.12i)31-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(−0.253+0.967i)Λ(4−s)
Λ(s)=(=(72s/2ΓC(s+3/2)L(s)(−0.253+0.967i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
−0.253+0.967i
|
Analytic conductor: |
4.24813 |
Root analytic conductor: |
2.06110 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(25,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :3/2), −0.253+0.967i)
|
Particular Values
L(2) |
≈ |
0.416486−0.539974i |
L(21) |
≈ |
0.416486−0.539974i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(2.78−4.38i)T |
good | 5 | 1+(8.65+14.9i)T+(−62.5+108.i)T2 |
| 7 | 1+(−1.18+2.05i)T+(−171.5−297.i)T2 |
| 11 | 1+(−26.1+45.2i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+(6.84+11.8i)T+(−1.09e3+1.90e3i)T2 |
| 17 | 1+82.9T+4.91e3T2 |
| 19 | 1+126.T+6.85e3T2 |
| 23 | 1+(−27.1−47.0i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−106.+184.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(−112.−194.i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+32.2T+5.06e4T2 |
| 41 | 1+(250.+433.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−6.41+11.1i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(104.−181.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1−371.T+1.48e5T2 |
| 59 | 1+(2.90+5.03i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−302.+523.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(377.+653.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−43.4T+3.57e5T2 |
| 73 | 1−671.T+3.89e5T2 |
| 79 | 1+(−324.+562.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+(67.2−116.i)T+(−2.85e5−4.95e5i)T2 |
| 89 | 1+206.T+7.04e5T2 |
| 97 | 1+(−726.+1.25e3i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.79046279110824336740199264041, −12.48547093477995770349339206081, −11.59919085558911877592863510127, −10.62252492073193778467606160344, −9.010583880172123994242527988560, −8.434815063939118023077311059299, −6.33911369973064737489732563184, −4.87175120988279087593451480516, −3.87815165367553907896411203179, −0.46735021420415633227617212473,
2.31182166758298249459667846443, 4.40554722920985747657343631650, 6.60528768023941667007322682854, 6.97884433557927590712820022617, 8.432314732670337572744040575712, 10.31317045437170488974332898503, 11.30129440937769803144658808139, 12.09353166230473628395622834386, 13.24622707243852200909950482399, 14.66475365449898672695810052762