L(s) = 1 | + (−2.78 + 4.38i)3-s + (−8.65 − 14.9i)5-s + (1.18 − 2.05i)7-s + (−11.5 − 24.4i)9-s + (26.1 − 45.2i)11-s + (−6.84 − 11.8i)13-s + (89.9 + 3.70i)15-s − 82.9·17-s − 126.·19-s + (5.72 + 10.9i)21-s + (27.1 + 47.0i)23-s + (−87.4 + 151. i)25-s + (139. + 17.2i)27-s + (106. − 184. i)29-s + (112. + 194. i)31-s + ⋯ |
L(s) = 1 | + (−0.535 + 0.844i)3-s + (−0.774 − 1.34i)5-s + (0.0640 − 0.110i)7-s + (−0.427 − 0.904i)9-s + (0.715 − 1.23i)11-s + (−0.146 − 0.253i)13-s + (1.54 + 0.0636i)15-s − 1.18·17-s − 1.53·19-s + (0.0594 + 0.113i)21-s + (0.246 + 0.426i)23-s + (−0.699 + 1.21i)25-s + (0.992 + 0.123i)27-s + (0.681 − 1.18i)29-s + (0.649 + 1.12i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.253 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.416486 - 0.539974i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.416486 - 0.539974i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.78 - 4.38i)T \) |
good | 5 | \( 1 + (8.65 + 14.9i)T + (-62.5 + 108. i)T^{2} \) |
| 7 | \( 1 + (-1.18 + 2.05i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-26.1 + 45.2i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + (6.84 + 11.8i)T + (-1.09e3 + 1.90e3i)T^{2} \) |
| 17 | \( 1 + 82.9T + 4.91e3T^{2} \) |
| 19 | \( 1 + 126.T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-27.1 - 47.0i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-106. + 184. i)T + (-1.21e4 - 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-112. - 194. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + 32.2T + 5.06e4T^{2} \) |
| 41 | \( 1 + (250. + 433. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-6.41 + 11.1i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + (104. - 181. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 - 371.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (2.90 + 5.03i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-302. + 523. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (377. + 653. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 43.4T + 3.57e5T^{2} \) |
| 73 | \( 1 - 671.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-324. + 562. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + (67.2 - 116. i)T + (-2.85e5 - 4.95e5i)T^{2} \) |
| 89 | \( 1 + 206.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-726. + 1.25e3i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.79046279110824336740199264041, −12.48547093477995770349339206081, −11.59919085558911877592863510127, −10.62252492073193778467606160344, −9.010583880172123994242527988560, −8.434815063939118023077311059299, −6.33911369973064737489732563184, −4.87175120988279087593451480516, −3.87815165367553907896411203179, −0.46735021420415633227617212473,
2.31182166758298249459667846443, 4.40554722920985747657343631650, 6.60528768023941667007322682854, 6.97884433557927590712820022617, 8.432314732670337572744040575712, 10.31317045437170488974332898503, 11.30129440937769803144658808139, 12.09353166230473628395622834386, 13.24622707243852200909950482399, 14.66475365449898672695810052762