Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [72,4,Mod(25,72)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(72, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("72.25");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 72.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.5206055409.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 |
|
0 | −4.74736 | − | 2.11248i | 0 | 2.99723 | + | 5.19136i | 0 | −7.78882 | + | 13.4906i | 0 | 18.0749 | + | 20.0574i | 0 | ||||||||||||||||||||||||||||||||||
25.2 | 0 | −2.78092 | + | 4.38936i | 0 | −8.65944 | − | 14.9986i | 0 | 1.18676 | − | 2.05553i | 0 | −11.5330 | − | 24.4129i | 0 | |||||||||||||||||||||||||||||||||||
25.3 | 0 | 2.06310 | − | 4.76903i | 0 | −0.845922 | − | 1.46518i | 0 | 8.57067 | − | 14.8448i | 0 | −18.4873 | − | 19.6779i | 0 | |||||||||||||||||||||||||||||||||||
25.4 | 0 | 3.96518 | + | 3.35817i | 0 | 4.00813 | + | 6.94228i | 0 | −0.468615 | + | 0.811666i | 0 | 4.44536 | + | 26.6315i | 0 | |||||||||||||||||||||||||||||||||||
49.1 | 0 | −4.74736 | + | 2.11248i | 0 | 2.99723 | − | 5.19136i | 0 | −7.78882 | − | 13.4906i | 0 | 18.0749 | − | 20.0574i | 0 | |||||||||||||||||||||||||||||||||||
49.2 | 0 | −2.78092 | − | 4.38936i | 0 | −8.65944 | + | 14.9986i | 0 | 1.18676 | + | 2.05553i | 0 | −11.5330 | + | 24.4129i | 0 | |||||||||||||||||||||||||||||||||||
49.3 | 0 | 2.06310 | + | 4.76903i | 0 | −0.845922 | + | 1.46518i | 0 | 8.57067 | + | 14.8448i | 0 | −18.4873 | + | 19.6779i | 0 | |||||||||||||||||||||||||||||||||||
49.4 | 0 | 3.96518 | − | 3.35817i | 0 | 4.00813 | − | 6.94228i | 0 | −0.468615 | − | 0.811666i | 0 | 4.44536 | − | 26.6315i | 0 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.4.i.a | ✓ | 8 |
3.b | odd | 2 | 1 | 216.4.i.a | 8 | ||
4.b | odd | 2 | 1 | 144.4.i.e | 8 | ||
9.c | even | 3 | 1 | inner | 72.4.i.a | ✓ | 8 |
9.c | even | 3 | 1 | 648.4.a.i | 4 | ||
9.d | odd | 6 | 1 | 216.4.i.a | 8 | ||
9.d | odd | 6 | 1 | 648.4.a.h | 4 | ||
12.b | even | 2 | 1 | 432.4.i.e | 8 | ||
36.f | odd | 6 | 1 | 144.4.i.e | 8 | ||
36.f | odd | 6 | 1 | 1296.4.a.ba | 4 | ||
36.h | even | 6 | 1 | 432.4.i.e | 8 | ||
36.h | even | 6 | 1 | 1296.4.a.y | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.4.i.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
72.4.i.a | ✓ | 8 | 9.c | even | 3 | 1 | inner |
144.4.i.e | 8 | 4.b | odd | 2 | 1 | ||
144.4.i.e | 8 | 36.f | odd | 6 | 1 | ||
216.4.i.a | 8 | 3.b | odd | 2 | 1 | ||
216.4.i.a | 8 | 9.d | odd | 6 | 1 | ||
432.4.i.e | 8 | 12.b | even | 2 | 1 | ||
432.4.i.e | 8 | 36.h | even | 6 | 1 | ||
648.4.a.h | 4 | 9.d | odd | 6 | 1 | ||
648.4.a.i | 4 | 9.c | even | 3 | 1 | ||
1296.4.a.y | 4 | 36.h | even | 6 | 1 | ||
1296.4.a.ba | 4 | 36.f | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .