Properties

Label 648.4.a.h
Level $648$
Weight $4$
Character orbit 648.a
Self dual yes
Analytic conductor $38.233$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,4,Mod(1,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 648.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.2332376837\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.72153.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + 3x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 72)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{5} + ( - \beta_{3} - 1) q^{7} + (\beta_{3} + 2 \beta_{2} - \beta_1 + 4) q^{11} + (4 \beta_{3} - \beta_1 - 6) q^{13} + ( - 6 \beta_{3} + 10 \beta_{2} + \cdots - 1) q^{17} + (2 \beta_{3} - \beta_{2} + 6 \beta_1 - 28) q^{19}+ \cdots + (64 \beta_{3} - 39 \beta_{2} + \cdots - 606) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{5} - 3 q^{7} + 16 q^{11} - 29 q^{13} + 17 q^{17} - 109 q^{19} + 37 q^{23} - 97 q^{25} - 3 q^{29} - 331 q^{31} + 171 q^{35} - 366 q^{37} - 378 q^{41} - 506 q^{43} + 171 q^{47} - 829 q^{49} - 410 q^{53}+ \cdots - 2506 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 8x^{2} + 3x + 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu^{3} - 3\nu^{2} - 12\nu + 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{3} + 5\nu^{2} - 17 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} + 5\nu^{2} + 6\nu - 19 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{3} + \beta_{2} + \beta _1 + 51 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 10\beta_{3} - 7\beta_{2} + 5\beta _1 + 51 ) / 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.15756
2.90825
−1.26386
1.51317
0 0 0 −17.3189 0 −2.37353 0 0 0
1.2 0 0 0 −1.69184 0 −17.1413 0 0 0
1.3 0 0 0 5.99447 0 15.5776 0 0 0
1.4 0 0 0 8.01626 0 0.937231 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 648.4.a.h 4
3.b odd 2 1 648.4.a.i 4
4.b odd 2 1 1296.4.a.y 4
9.c even 3 2 216.4.i.a 8
9.d odd 6 2 72.4.i.a 8
12.b even 2 1 1296.4.a.ba 4
36.f odd 6 2 432.4.i.e 8
36.h even 6 2 144.4.i.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.4.i.a 8 9.d odd 6 2
144.4.i.e 8 36.h even 6 2
216.4.i.a 8 9.c even 3 2
432.4.i.e 8 36.f odd 6 2
648.4.a.h 4 1.a even 1 1 trivial
648.4.a.i 4 3.b odd 2 1
1296.4.a.y 4 4.b odd 2 1
1296.4.a.ba 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 5T_{5}^{3} - 189T_{5}^{2} + 503T_{5} + 1408 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(648))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 5 T^{3} + \cdots + 1408 \) Copy content Toggle raw display
$7$ \( T^{4} + 3 T^{3} + \cdots + 594 \) Copy content Toggle raw display
$11$ \( T^{4} - 16 T^{3} + \cdots + 38929 \) Copy content Toggle raw display
$13$ \( T^{4} + 29 T^{3} + \cdots + 141262 \) Copy content Toggle raw display
$17$ \( T^{4} - 17 T^{3} + \cdots + 2567224 \) Copy content Toggle raw display
$19$ \( T^{4} + 109 T^{3} + \cdots - 5081408 \) Copy content Toggle raw display
$23$ \( T^{4} - 37 T^{3} + \cdots + 37951678 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 1572741522 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 3182697596 \) Copy content Toggle raw display
$37$ \( T^{4} + 366 T^{3} + \cdots - 215981856 \) Copy content Toggle raw display
$41$ \( T^{4} + 378 T^{3} + \cdots - 360819333 \) Copy content Toggle raw display
$43$ \( T^{4} + 506 T^{3} + \cdots - 567289217 \) Copy content Toggle raw display
$47$ \( T^{4} - 171 T^{3} + \cdots - 310694022 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 15963093536 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 1415131633 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 48115815704 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 137320199621 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 9762389248 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 88005243128 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 98670843044 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 67888747828 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 22003976592 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 818649939857 \) Copy content Toggle raw display
show more
show less