L(s) = 1 | + (−0.342 − 1.37i)2-s + (0.254 − 1.71i)3-s + (−1.76 + 0.939i)4-s + (−0.965 − 0.258i)5-s + (−2.43 + 0.236i)6-s + (−0.158 + 0.273i)7-s + (1.89 + 2.10i)8-s + (−2.87 − 0.872i)9-s + (−0.0246 + 1.41i)10-s + (−3.26 + 0.876i)11-s + (1.15 + 3.26i)12-s + (−1.09 − 0.293i)13-s + (0.430 + 0.123i)14-s + (−0.689 + 1.58i)15-s + (2.23 − 3.31i)16-s + 4.42i·17-s + ⋯ |
L(s) = 1 | + (−0.241 − 0.970i)2-s + (0.147 − 0.989i)3-s + (−0.882 + 0.469i)4-s + (−0.431 − 0.115i)5-s + (−0.995 + 0.0966i)6-s + (−0.0597 + 0.103i)7-s + (0.669 + 0.743i)8-s + (−0.956 − 0.290i)9-s + (−0.00778 + 0.447i)10-s + (−0.985 + 0.264i)11-s + (0.334 + 0.942i)12-s + (−0.303 − 0.0812i)13-s + (0.114 + 0.0329i)14-s + (−0.178 + 0.410i)15-s + (0.559 − 0.829i)16-s + 1.07i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.621 - 0.783i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.172905 + 0.0835752i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.172905 + 0.0835752i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.342 + 1.37i)T \) |
| 3 | \( 1 + (-0.254 + 1.71i)T \) |
| 5 | \( 1 + (0.965 + 0.258i)T \) |
good | 7 | \( 1 + (0.158 - 0.273i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.26 - 0.876i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (1.09 + 0.293i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 - 4.42iT - 17T^{2} \) |
| 19 | \( 1 + (-1.01 - 1.01i)T + 19iT^{2} \) |
| 23 | \( 1 + (3.26 - 1.88i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.83 - 0.490i)T + (25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (0.144 - 0.0835i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.92 - 4.92i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.56 + 2.70i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.65 + 9.89i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (4.15 - 7.20i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (7.29 - 7.29i)T - 53iT^{2} \) |
| 59 | \( 1 + (-3.00 + 11.2i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (0.932 + 3.47i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (1.31 - 4.89i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 0.833iT - 71T^{2} \) |
| 73 | \( 1 + 4.99iT - 73T^{2} \) |
| 79 | \( 1 + (4.31 + 2.49i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.73 + 13.9i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + 8.33T + 89T^{2} \) |
| 97 | \( 1 + (1.79 - 3.10i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63745496964583646447427590999, −9.762143960327242978008319902525, −8.741631063303028677509614798557, −7.960301055167468531248046284586, −7.48316683273315990156957452412, −6.07208571600497938086440160885, −5.00110325491366884685740552358, −3.71532781417696654550827018868, −2.66206909431681880520745298208, −1.56863259261124630268742461393,
0.10544122398535483098766633264, 2.81262360311080910323100669216, 4.05288622101395556201382406107, 4.93914419905305144963482570955, 5.66939045121902321001962222945, 6.87309022342021738405622893319, 7.83723466184497574626401804107, 8.433037495881722703596325943731, 9.475180021193603353844147133541, 9.999599328069824787970540880713