Properties

Label 2-720-15.14-c2-0-1
Degree 22
Conductor 720720
Sign 0.7890.614i-0.789 - 0.614i
Analytic cond. 19.618519.6185
Root an. cond. 4.429284.42928
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.229 + 4.99i)5-s − 8.73i·7-s + 10.4i·11-s + 5.38i·13-s − 26.2·17-s + 2.70·19-s + 33.2·23-s + (−24.8 − 2.28i)25-s + 17.4i·29-s − 48.3·31-s + (43.6 + 2.00i)35-s + 66.2i·37-s + 14.7i·41-s − 28.4i·43-s − 35.9·47-s + ⋯
L(s)  = 1  + (−0.0458 + 0.998i)5-s − 1.24i·7-s + 0.953i·11-s + 0.414i·13-s − 1.54·17-s + 0.142·19-s + 1.44·23-s + (−0.995 − 0.0915i)25-s + 0.602i·29-s − 1.56·31-s + (1.24 + 0.0572i)35-s + 1.79i·37-s + 0.359i·41-s − 0.661i·43-s − 0.764·47-s + ⋯

Functional equation

Λ(s)=(720s/2ΓC(s)L(s)=((0.7890.614i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.789 - 0.614i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(720s/2ΓC(s+1)L(s)=((0.7890.614i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.789 - 0.614i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 720720    =    243252^{4} \cdot 3^{2} \cdot 5
Sign: 0.7890.614i-0.789 - 0.614i
Analytic conductor: 19.618519.6185
Root analytic conductor: 4.429284.42928
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ720(449,)\chi_{720} (449, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 720, ( :1), 0.7890.614i)(2,\ 720,\ (\ :1),\ -0.789 - 0.614i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.80997943020.8099794302
L(12)L(\frac12) \approx 0.80997943020.8099794302
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(0.2294.99i)T 1 + (0.229 - 4.99i)T
good7 1+8.73iT49T2 1 + 8.73iT - 49T^{2}
11 110.4iT121T2 1 - 10.4iT - 121T^{2}
13 15.38iT169T2 1 - 5.38iT - 169T^{2}
17 1+26.2T+289T2 1 + 26.2T + 289T^{2}
19 12.70T+361T2 1 - 2.70T + 361T^{2}
23 133.2T+529T2 1 - 33.2T + 529T^{2}
29 117.4iT841T2 1 - 17.4iT - 841T^{2}
31 1+48.3T+961T2 1 + 48.3T + 961T^{2}
37 166.2iT1.36e3T2 1 - 66.2iT - 1.36e3T^{2}
41 114.7iT1.68e3T2 1 - 14.7iT - 1.68e3T^{2}
43 1+28.4iT1.84e3T2 1 + 28.4iT - 1.84e3T^{2}
47 1+35.9T+2.20e3T2 1 + 35.9T + 2.20e3T^{2}
53 1+42.2T+2.80e3T2 1 + 42.2T + 2.80e3T^{2}
59 155.9iT3.48e3T2 1 - 55.9iT - 3.48e3T^{2}
61 1+96.1T+3.72e3T2 1 + 96.1T + 3.72e3T^{2}
67 1+15.4iT4.48e3T2 1 + 15.4iT - 4.48e3T^{2}
71 113.5iT5.04e3T2 1 - 13.5iT - 5.04e3T^{2}
73 1+63.7iT5.32e3T2 1 + 63.7iT - 5.32e3T^{2}
79 1+94.5T+6.24e3T2 1 + 94.5T + 6.24e3T^{2}
83 1+19.4T+6.88e3T2 1 + 19.4T + 6.88e3T^{2}
89 1118.iT7.92e3T2 1 - 118. iT - 7.92e3T^{2}
97 1100.iT9.40e3T2 1 - 100. iT - 9.40e3T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.76316992931983002128596702515, −9.788507030390641063362000267875, −8.965003834294115127766050304295, −7.65409311692330677360564191198, −6.97792499476209942165435871772, −6.54593790732215082874910037739, −4.93093544432469243043433512689, −4.09255683325102169790921487172, −3.00299431767854170063669968262, −1.65235532241044813063405729625, 0.27247822111649893783271917147, 1.89967053312408122838757118346, 3.13063080170806990179482072234, 4.47164843934817372484679825373, 5.43809620730264322216964866546, 6.03381436316480370647885244354, 7.32998054463873230889570172114, 8.499594704393535833607690882749, 8.888990430948075740132134356781, 9.540109463482324561324726485358

Graph of the ZZ-function along the critical line