L(s) = 1 | + (1 − 4.89i)5-s + 8.48·7-s + 13.8i·11-s + 9.79i·13-s + 19.5i·17-s + 13.8i·19-s + 25.4·23-s + (−22.9 − 9.79i)25-s + 22·29-s − 55.4i·31-s + (8.48 − 41.5i)35-s + 48.9i·37-s − 22·41-s + 59.3·43-s − 8.48·47-s + ⋯ |
L(s) = 1 | + (0.200 − 0.979i)5-s + 1.21·7-s + 1.25i·11-s + 0.753i·13-s + 1.15i·17-s + 0.729i·19-s + 1.10·23-s + (−0.919 − 0.391i)25-s + 0.758·29-s − 1.78i·31-s + (0.242 − 1.18i)35-s + 1.32i·37-s − 0.536·41-s + 1.38·43-s − 0.180·47-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.948−0.316i)Λ(3−s)
Λ(s)=(=(720s/2ΓC(s+1)L(s)(0.948−0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.948−0.316i
|
Analytic conductor: |
19.6185 |
Root analytic conductor: |
4.42928 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1), 0.948−0.316i)
|
Particular Values
L(23) |
≈ |
2.199100084 |
L(21) |
≈ |
2.199100084 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−1+4.89i)T |
good | 7 | 1−8.48T+49T2 |
| 11 | 1−13.8iT−121T2 |
| 13 | 1−9.79iT−169T2 |
| 17 | 1−19.5iT−289T2 |
| 19 | 1−13.8iT−361T2 |
| 23 | 1−25.4T+529T2 |
| 29 | 1−22T+841T2 |
| 31 | 1+55.4iT−961T2 |
| 37 | 1−48.9iT−1.36e3T2 |
| 41 | 1+22T+1.68e3T2 |
| 43 | 1−59.3T+1.84e3T2 |
| 47 | 1+8.48T+2.20e3T2 |
| 53 | 1+29.3iT−2.80e3T2 |
| 59 | 1−13.8iT−3.48e3T2 |
| 61 | 1−46T+3.72e3T2 |
| 67 | 1−59.3T+4.48e3T2 |
| 71 | 1+27.7iT−5.04e3T2 |
| 73 | 1−78.3iT−5.32e3T2 |
| 79 | 1−6.24e3T2 |
| 83 | 1−76.3T+6.88e3T2 |
| 89 | 1+146T+7.92e3T2 |
| 97 | 1+58.7iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12314444933941136286159186327, −9.408567079873112220094318648353, −8.417086141303152316892211975458, −7.896748022563885638265485421799, −6.76587457971949025501721229378, −5.61012994713665419596218429139, −4.67943389130162563053487187332, −4.12173243985739374354569372247, −2.12328433888116365851164971099, −1.30989940018502029144559718886,
0.898934350621925357743928838947, 2.54929407515441619522061153894, 3.36009374717947888408977617960, 4.86907727573428887911347332534, 5.59047393734977297073220558731, 6.75674326683683776189357233670, 7.50687693131414763856887119901, 8.439404926580497552975778004389, 9.213650667793910855640697119645, 10.46104089603655875300388917027