gp: [N,k,chi] = [720,3,Mod(559,720)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(720, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("720.559");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 2 x 2 + 4 x^{4} + 2x^{2} + 4 x 4 + 2 x 2 + 4
x^4 + 2*x^2 + 4
:
β 1 \beta_{1} β 1 = = =
ν 3 + 4 ν \nu^{3} + 4\nu ν 3 + 4 ν
v^3 + 4*v
β 2 \beta_{2} β 2 = = =
− 3 ν 3 -3\nu^{3} − 3 ν 3
-3*v^3
β 3 \beta_{3} β 3 = = =
8 ν 2 + 8 8\nu^{2} + 8 8 ν 2 + 8
8*v^2 + 8
ν \nu ν = = =
( β 2 + 3 β 1 ) / 12 ( \beta_{2} + 3\beta_1 ) / 12 ( β 2 + 3 β 1 ) / 1 2
(b2 + 3*b1) / 12
ν 2 \nu^{2} ν 2 = = =
( β 3 − 8 ) / 8 ( \beta_{3} - 8 ) / 8 ( β 3 − 8 ) / 8
(b3 - 8) / 8
ν 3 \nu^{3} ν 3 = = =
( − β 2 ) / 3 ( -\beta_{2} ) / 3 ( − β 2 ) / 3
(-b2) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 720 Z ) × \left(\mathbb{Z}/720\mathbb{Z}\right)^\times ( Z / 7 2 0 Z ) × .
n n n
181 181 1 8 1
271 271 2 7 1
577 577 5 7 7
641 641 6 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 720 , [ χ ] ) S_{3}^{\mathrm{new}}(720, [\chi]) S 3 n e w ( 7 2 0 , [ χ ] ) :
T 7 2 − 72 T_{7}^{2} - 72 T 7 2 − 7 2
T7^2 - 72
T 11 2 + 192 T_{11}^{2} + 192 T 1 1 2 + 1 9 2
T11^2 + 192
T 29 − 22 T_{29} - 22 T 2 9 − 2 2
T29 - 22
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
( T 2 − 2 T + 25 ) 2 (T^{2} - 2 T + 25)^{2} ( T 2 − 2 T + 2 5 ) 2
(T^2 - 2*T + 25)^2
7 7 7
( T 2 − 72 ) 2 (T^{2} - 72)^{2} ( T 2 − 7 2 ) 2
(T^2 - 72)^2
11 11 1 1
( T 2 + 192 ) 2 (T^{2} + 192)^{2} ( T 2 + 1 9 2 ) 2
(T^2 + 192)^2
13 13 1 3
( T 2 + 96 ) 2 (T^{2} + 96)^{2} ( T 2 + 9 6 ) 2
(T^2 + 96)^2
17 17 1 7
( T 2 + 384 ) 2 (T^{2} + 384)^{2} ( T 2 + 3 8 4 ) 2
(T^2 + 384)^2
19 19 1 9
( T 2 + 192 ) 2 (T^{2} + 192)^{2} ( T 2 + 1 9 2 ) 2
(T^2 + 192)^2
23 23 2 3
( T 2 − 648 ) 2 (T^{2} - 648)^{2} ( T 2 − 6 4 8 ) 2
(T^2 - 648)^2
29 29 2 9
( T − 22 ) 4 (T - 22)^{4} ( T − 2 2 ) 4
(T - 22)^4
31 31 3 1
( T 2 + 3072 ) 2 (T^{2} + 3072)^{2} ( T 2 + 3 0 7 2 ) 2
(T^2 + 3072)^2
37 37 3 7
( T 2 + 2400 ) 2 (T^{2} + 2400)^{2} ( T 2 + 2 4 0 0 ) 2
(T^2 + 2400)^2
41 41 4 1
( T + 22 ) 4 (T + 22)^{4} ( T + 2 2 ) 4
(T + 22)^4
43 43 4 3
( T 2 − 3528 ) 2 (T^{2} - 3528)^{2} ( T 2 − 3 5 2 8 ) 2
(T^2 - 3528)^2
47 47 4 7
( T 2 − 72 ) 2 (T^{2} - 72)^{2} ( T 2 − 7 2 ) 2
(T^2 - 72)^2
53 53 5 3
( T 2 + 864 ) 2 (T^{2} + 864)^{2} ( T 2 + 8 6 4 ) 2
(T^2 + 864)^2
59 59 5 9
( T 2 + 192 ) 2 (T^{2} + 192)^{2} ( T 2 + 1 9 2 ) 2
(T^2 + 192)^2
61 61 6 1
( T − 46 ) 4 (T - 46)^{4} ( T − 4 6 ) 4
(T - 46)^4
67 67 6 7
( T 2 − 3528 ) 2 (T^{2} - 3528)^{2} ( T 2 − 3 5 2 8 ) 2
(T^2 - 3528)^2
71 71 7 1
( T 2 + 768 ) 2 (T^{2} + 768)^{2} ( T 2 + 7 6 8 ) 2
(T^2 + 768)^2
73 73 7 3
( T 2 + 6144 ) 2 (T^{2} + 6144)^{2} ( T 2 + 6 1 4 4 ) 2
(T^2 + 6144)^2
79 79 7 9
T 4 T^{4} T 4
T^4
83 83 8 3
( T 2 − 5832 ) 2 (T^{2} - 5832)^{2} ( T 2 − 5 8 3 2 ) 2
(T^2 - 5832)^2
89 89 8 9
( T + 146 ) 4 (T + 146)^{4} ( T + 1 4 6 ) 4
(T + 146)^4
97 97 9 7
( T 2 + 3456 ) 2 (T^{2} + 3456)^{2} ( T 2 + 3 4 5 6 ) 2
(T^2 + 3456)^2
show more
show less