Properties

Label 720.3.j.e
Level 720720
Weight 33
Character orbit 720.j
Analytic conductor 19.61919.619
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,3,Mod(559,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.559");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 720=24325 720 = 2^{4} \cdot 3^{2} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 720.j (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.618579033919.6185790339
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 273 2^{7}\cdot 3
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q5β2q7+β3q112β1q134β1q17+β3q193β2q23+(2β123)q25+22q294β3q31+(3β3β2)q35++12β1q97+O(q100) q + (\beta_1 + 1) q^{5} - \beta_{2} q^{7} + \beta_{3} q^{11} - 2 \beta_1 q^{13} - 4 \beta_1 q^{17} + \beta_{3} q^{19} - 3 \beta_{2} q^{23} + (2 \beta_1 - 23) q^{25} + 22 q^{29} - 4 \beta_{3} q^{31} + ( - 3 \beta_{3} - \beta_{2}) q^{35}+ \cdots + 12 \beta_1 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q592q25+88q2988q41+92q49+184q61+192q65+384q85584q89+O(q100) 4 q + 4 q^{5} - 92 q^{25} + 88 q^{29} - 88 q^{41} + 92 q^{49} + 184 q^{61} + 192 q^{65} + 384 q^{85} - 584 q^{89}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν3+4ν \nu^{3} + 4\nu Copy content Toggle raw display
β2\beta_{2}== 3ν3 -3\nu^{3} Copy content Toggle raw display
β3\beta_{3}== 8ν2+8 8\nu^{2} + 8 Copy content Toggle raw display
ν\nu== (β2+3β1)/12 ( \beta_{2} + 3\beta_1 ) / 12 Copy content Toggle raw display
ν2\nu^{2}== (β38)/8 ( \beta_{3} - 8 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== (β2)/3 ( -\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/720Z)×\left(\mathbb{Z}/720\mathbb{Z}\right)^\times.

nn 181181 271271 577577 641641
χ(n)\chi(n) 11 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
559.1
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
0 0 0 1.00000 4.89898i 0 −8.48528 0 0 0
559.2 0 0 0 1.00000 4.89898i 0 8.48528 0 0 0
559.3 0 0 0 1.00000 + 4.89898i 0 −8.48528 0 0 0
559.4 0 0 0 1.00000 + 4.89898i 0 8.48528 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.3.j.e 4
3.b odd 2 1 80.3.h.b 4
4.b odd 2 1 inner 720.3.j.e 4
5.b even 2 1 inner 720.3.j.e 4
5.c odd 4 2 3600.3.e.bd 4
12.b even 2 1 80.3.h.b 4
15.d odd 2 1 80.3.h.b 4
15.e even 4 2 400.3.b.h 4
20.d odd 2 1 inner 720.3.j.e 4
20.e even 4 2 3600.3.e.bd 4
24.f even 2 1 320.3.h.e 4
24.h odd 2 1 320.3.h.e 4
48.i odd 4 2 1280.3.e.j 8
48.k even 4 2 1280.3.e.j 8
60.h even 2 1 80.3.h.b 4
60.l odd 4 2 400.3.b.h 4
120.i odd 2 1 320.3.h.e 4
120.m even 2 1 320.3.h.e 4
120.q odd 4 2 1600.3.b.t 4
120.w even 4 2 1600.3.b.t 4
240.t even 4 2 1280.3.e.j 8
240.bm odd 4 2 1280.3.e.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
80.3.h.b 4 3.b odd 2 1
80.3.h.b 4 12.b even 2 1
80.3.h.b 4 15.d odd 2 1
80.3.h.b 4 60.h even 2 1
320.3.h.e 4 24.f even 2 1
320.3.h.e 4 24.h odd 2 1
320.3.h.e 4 120.i odd 2 1
320.3.h.e 4 120.m even 2 1
400.3.b.h 4 15.e even 4 2
400.3.b.h 4 60.l odd 4 2
720.3.j.e 4 1.a even 1 1 trivial
720.3.j.e 4 4.b odd 2 1 inner
720.3.j.e 4 5.b even 2 1 inner
720.3.j.e 4 20.d odd 2 1 inner
1280.3.e.j 8 48.i odd 4 2
1280.3.e.j 8 48.k even 4 2
1280.3.e.j 8 240.t even 4 2
1280.3.e.j 8 240.bm odd 4 2
1600.3.b.t 4 120.q odd 4 2
1600.3.b.t 4 120.w even 4 2
3600.3.e.bd 4 5.c odd 4 2
3600.3.e.bd 4 20.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(720,[χ])S_{3}^{\mathrm{new}}(720, [\chi]):

T7272 T_{7}^{2} - 72 Copy content Toggle raw display
T112+192 T_{11}^{2} + 192 Copy content Toggle raw display
T2922 T_{29} - 22 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T22T+25)2 (T^{2} - 2 T + 25)^{2} Copy content Toggle raw display
77 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
1111 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
1313 (T2+96)2 (T^{2} + 96)^{2} Copy content Toggle raw display
1717 (T2+384)2 (T^{2} + 384)^{2} Copy content Toggle raw display
1919 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
2323 (T2648)2 (T^{2} - 648)^{2} Copy content Toggle raw display
2929 (T22)4 (T - 22)^{4} Copy content Toggle raw display
3131 (T2+3072)2 (T^{2} + 3072)^{2} Copy content Toggle raw display
3737 (T2+2400)2 (T^{2} + 2400)^{2} Copy content Toggle raw display
4141 (T+22)4 (T + 22)^{4} Copy content Toggle raw display
4343 (T23528)2 (T^{2} - 3528)^{2} Copy content Toggle raw display
4747 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
5353 (T2+864)2 (T^{2} + 864)^{2} Copy content Toggle raw display
5959 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
6161 (T46)4 (T - 46)^{4} Copy content Toggle raw display
6767 (T23528)2 (T^{2} - 3528)^{2} Copy content Toggle raw display
7171 (T2+768)2 (T^{2} + 768)^{2} Copy content Toggle raw display
7373 (T2+6144)2 (T^{2} + 6144)^{2} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 (T25832)2 (T^{2} - 5832)^{2} Copy content Toggle raw display
8989 (T+146)4 (T + 146)^{4} Copy content Toggle raw display
9797 (T2+3456)2 (T^{2} + 3456)^{2} Copy content Toggle raw display
show more
show less