Properties

Label 400.3.b.h
Level 400400
Weight 33
Character orbit 400.b
Analytic conductor 10.89910.899
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,3,Mod(351,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.351");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 400=2452 400 = 2^{4} \cdot 5^{2}
Weight: k k == 3 3
Character orbit: [χ][\chi] == 400.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.899210574410.8992105744
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 28 2^{8}
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q33β1q7+q9β3q11β2q132β2q17β3q19+24q219β1q23+10β1q27+22q294β3q31+β3q99+O(q100) q + \beta_1 q^{3} - 3 \beta_1 q^{7} + q^{9} - \beta_{3} q^{11} - \beta_{2} q^{13} - 2 \beta_{2} q^{17} - \beta_{3} q^{19} + 24 q^{21} - 9 \beta_1 q^{23} + 10 \beta_1 q^{27} + 22 q^{29} - 4 \beta_{3} q^{31}+ \cdots - \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q9+96q21+88q29+88q4192q49+184q61+288q69284q81584q89+O(q100) 4 q + 4 q^{9} + 96 q^{21} + 88 q^{29} + 88 q^{41} - 92 q^{49} + 184 q^{61} + 288 q^{69} - 284 q^{81} - 584 q^{89}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν3 \nu^{3} Copy content Toggle raw display
β2\beta_{2}== 2ν3+8ν -2\nu^{3} + 8\nu Copy content Toggle raw display
β3\beta_{3}== 8ν28 8\nu^{2} - 8 Copy content Toggle raw display
ν\nu== (β2+2β1)/8 ( \beta_{2} + 2\beta_1 ) / 8 Copy content Toggle raw display
ν2\nu^{2}== (β3+8)/8 ( \beta_{3} + 8 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== β1 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/400Z)×\left(\mathbb{Z}/400\mathbb{Z}\right)^\times.

nn 101101 177177 351351
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
351.1
−1.22474 0.707107i
1.22474 0.707107i
1.22474 + 0.707107i
−1.22474 + 0.707107i
0 2.82843i 0 0 0 8.48528i 0 1.00000 0
351.2 0 2.82843i 0 0 0 8.48528i 0 1.00000 0
351.3 0 2.82843i 0 0 0 8.48528i 0 1.00000 0
351.4 0 2.82843i 0 0 0 8.48528i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
20.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.3.b.h 4
3.b odd 2 1 3600.3.e.bd 4
4.b odd 2 1 inner 400.3.b.h 4
5.b even 2 1 inner 400.3.b.h 4
5.c odd 4 2 80.3.h.b 4
8.b even 2 1 1600.3.b.t 4
8.d odd 2 1 1600.3.b.t 4
12.b even 2 1 3600.3.e.bd 4
15.d odd 2 1 3600.3.e.bd 4
15.e even 4 2 720.3.j.e 4
20.d odd 2 1 inner 400.3.b.h 4
20.e even 4 2 80.3.h.b 4
40.e odd 2 1 1600.3.b.t 4
40.f even 2 1 1600.3.b.t 4
40.i odd 4 2 320.3.h.e 4
40.k even 4 2 320.3.h.e 4
60.h even 2 1 3600.3.e.bd 4
60.l odd 4 2 720.3.j.e 4
80.i odd 4 2 1280.3.e.j 8
80.j even 4 2 1280.3.e.j 8
80.s even 4 2 1280.3.e.j 8
80.t odd 4 2 1280.3.e.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
80.3.h.b 4 5.c odd 4 2
80.3.h.b 4 20.e even 4 2
320.3.h.e 4 40.i odd 4 2
320.3.h.e 4 40.k even 4 2
400.3.b.h 4 1.a even 1 1 trivial
400.3.b.h 4 4.b odd 2 1 inner
400.3.b.h 4 5.b even 2 1 inner
400.3.b.h 4 20.d odd 2 1 inner
720.3.j.e 4 15.e even 4 2
720.3.j.e 4 60.l odd 4 2
1280.3.e.j 8 80.i odd 4 2
1280.3.e.j 8 80.j even 4 2
1280.3.e.j 8 80.s even 4 2
1280.3.e.j 8 80.t odd 4 2
1600.3.b.t 4 8.b even 2 1
1600.3.b.t 4 8.d odd 2 1
1600.3.b.t 4 40.e odd 2 1
1600.3.b.t 4 40.f even 2 1
3600.3.e.bd 4 3.b odd 2 1
3600.3.e.bd 4 12.b even 2 1
3600.3.e.bd 4 15.d odd 2 1
3600.3.e.bd 4 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(400,[χ])S_{3}^{\mathrm{new}}(400, [\chi]):

T32+8 T_{3}^{2} + 8 Copy content Toggle raw display
T13296 T_{13}^{2} - 96 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T2+72)2 (T^{2} + 72)^{2} Copy content Toggle raw display
1111 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
1313 (T296)2 (T^{2} - 96)^{2} Copy content Toggle raw display
1717 (T2384)2 (T^{2} - 384)^{2} Copy content Toggle raw display
1919 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
2323 (T2+648)2 (T^{2} + 648)^{2} Copy content Toggle raw display
2929 (T22)4 (T - 22)^{4} Copy content Toggle raw display
3131 (T2+3072)2 (T^{2} + 3072)^{2} Copy content Toggle raw display
3737 (T22400)2 (T^{2} - 2400)^{2} Copy content Toggle raw display
4141 (T22)4 (T - 22)^{4} Copy content Toggle raw display
4343 (T2+3528)2 (T^{2} + 3528)^{2} Copy content Toggle raw display
4747 (T2+72)2 (T^{2} + 72)^{2} Copy content Toggle raw display
5353 (T2864)2 (T^{2} - 864)^{2} Copy content Toggle raw display
5959 (T2+192)2 (T^{2} + 192)^{2} Copy content Toggle raw display
6161 (T46)4 (T - 46)^{4} Copy content Toggle raw display
6767 (T2+3528)2 (T^{2} + 3528)^{2} Copy content Toggle raw display
7171 (T2+768)2 (T^{2} + 768)^{2} Copy content Toggle raw display
7373 (T26144)2 (T^{2} - 6144)^{2} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 (T2+5832)2 (T^{2} + 5832)^{2} Copy content Toggle raw display
8989 (T+146)4 (T + 146)^{4} Copy content Toggle raw display
9797 (T23456)2 (T^{2} - 3456)^{2} Copy content Toggle raw display
show more
show less