L(s) = 1 | + 3i·7-s + 5i·13-s + 5·19-s − 4i·23-s + 4·29-s + 5·31-s − 10i·37-s + 10·41-s + i·43-s − 2i·47-s − 2·49-s − 10i·53-s + 10·59-s − 5·61-s + 3i·67-s + ⋯ |
L(s) = 1 | + 1.13i·7-s + 1.38i·13-s + 1.14·19-s − 0.834i·23-s + 0.742·29-s + 0.898·31-s − 1.64i·37-s + 1.56·41-s + 0.152i·43-s − 0.291i·47-s − 0.285·49-s − 1.37i·53-s + 1.30·59-s − 0.640·61-s + 0.366i·67-s + ⋯ |
Λ(s)=(=(7200s/2ΓC(s)L(s)(0.447−0.894i)Λ(2−s)
Λ(s)=(=(7200s/2ΓC(s+1/2)L(s)(0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
7200
= 25⋅32⋅52
|
Sign: |
0.447−0.894i
|
Analytic conductor: |
57.4922 |
Root analytic conductor: |
7.58236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ7200(6049,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 7200, ( :1/2), 0.447−0.894i)
|
Particular Values
L(1) |
≈ |
2.131847903 |
L(21) |
≈ |
2.131847903 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−3iT−7T2 |
| 11 | 1+11T2 |
| 13 | 1−5iT−13T2 |
| 17 | 1−17T2 |
| 19 | 1−5T+19T2 |
| 23 | 1+4iT−23T2 |
| 29 | 1−4T+29T2 |
| 31 | 1−5T+31T2 |
| 37 | 1+10iT−37T2 |
| 41 | 1−10T+41T2 |
| 43 | 1−iT−43T2 |
| 47 | 1+2iT−47T2 |
| 53 | 1+10iT−53T2 |
| 59 | 1−10T+59T2 |
| 61 | 1+5T+61T2 |
| 67 | 1−3iT−67T2 |
| 71 | 1+10T+71T2 |
| 73 | 1−10iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1−14iT−83T2 |
| 89 | 1−16T+89T2 |
| 97 | 1+5iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.148468579894745603695875477969, −7.28023168690919572646069183866, −6.63541625678875215429004032080, −5.94568846680347586150238349800, −5.27508510328405042018960804052, −4.50723559878007910352613320723, −3.75262958844375785241169807452, −2.64691516672709656661156680712, −2.17228386581809727127179070735, −0.942848077601048138011088464609,
0.67185663936785838554514551888, 1.34120108166275898542197366711, 2.83177302732851896102600997987, 3.28585768730193686191191002202, 4.25532822294967279801780018616, 4.90875745841107105449303967299, 5.72872715915044863802487067710, 6.37927225341814861272845710688, 7.36774563390800496799461939241, 7.63699792013487946406843668830