Properties

Label 2-7200-5.4-c1-0-36
Degree $2$
Conductor $7200$
Sign $0.447 - 0.894i$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3i·7-s + 5i·13-s + 5·19-s − 4i·23-s + 4·29-s + 5·31-s − 10i·37-s + 10·41-s + i·43-s − 2i·47-s − 2·49-s − 10i·53-s + 10·59-s − 5·61-s + 3i·67-s + ⋯
L(s)  = 1  + 1.13i·7-s + 1.38i·13-s + 1.14·19-s − 0.834i·23-s + 0.742·29-s + 0.898·31-s − 1.64i·37-s + 1.56·41-s + 0.152i·43-s − 0.291i·47-s − 0.285·49-s − 1.37i·53-s + 1.30·59-s − 0.640·61-s + 0.366i·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{7200} (6049, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.131847903\)
\(L(\frac12)\) \(\approx\) \(2.131847903\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 3iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 5iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 5T + 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 - 4T + 29T^{2} \)
31 \( 1 - 5T + 31T^{2} \)
37 \( 1 + 10iT - 37T^{2} \)
41 \( 1 - 10T + 41T^{2} \)
43 \( 1 - iT - 43T^{2} \)
47 \( 1 + 2iT - 47T^{2} \)
53 \( 1 + 10iT - 53T^{2} \)
59 \( 1 - 10T + 59T^{2} \)
61 \( 1 + 5T + 61T^{2} \)
67 \( 1 - 3iT - 67T^{2} \)
71 \( 1 + 10T + 71T^{2} \)
73 \( 1 - 10iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 14iT - 83T^{2} \)
89 \( 1 - 16T + 89T^{2} \)
97 \( 1 + 5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.148468579894745603695875477969, −7.28023168690919572646069183866, −6.63541625678875215429004032080, −5.94568846680347586150238349800, −5.27508510328405042018960804052, −4.50723559878007910352613320723, −3.75262958844375785241169807452, −2.64691516672709656661156680712, −2.17228386581809727127179070735, −0.942848077601048138011088464609, 0.67185663936785838554514551888, 1.34120108166275898542197366711, 2.83177302732851896102600997987, 3.28585768730193686191191002202, 4.25532822294967279801780018616, 4.90875745841107105449303967299, 5.72872715915044863802487067710, 6.37927225341814861272845710688, 7.36774563390800496799461939241, 7.63699792013487946406843668830

Graph of the $Z$-function along the critical line