L(s) = 1 | − 2-s + 3-s + 4-s − 6-s + 7-s − 8-s + 11-s + 12-s − 13-s − 14-s + 16-s + 21-s − 22-s − 23-s − 24-s + 25-s + 26-s − 27-s + 28-s − 31-s − 32-s + 33-s + 37-s − 39-s − 41-s − 42-s + 44-s + ⋯ |
L(s) = 1 | − 2-s + 3-s + 4-s − 6-s + 7-s − 8-s + 11-s + 12-s − 13-s − 14-s + 16-s + 21-s − 22-s − 23-s − 24-s + 25-s + 26-s − 27-s + 28-s − 31-s − 32-s + 33-s + 37-s − 39-s − 41-s − 42-s + 44-s + ⋯ |
Λ(s)=(=(728s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(728s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
728
= 23⋅7⋅13
|
Sign: |
1
|
Analytic conductor: |
0.363319 |
Root analytic conductor: |
0.602759 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ728(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 728, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.9157975762 |
L(21) |
≈ |
0.9157975762 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 7 | 1−T |
| 13 | 1+T |
good | 3 | 1−T+T2 |
| 5 | (1−T)(1+T) |
| 11 | 1−T+T2 |
| 17 | (1−T)(1+T) |
| 19 | (1−T)(1+T) |
| 23 | 1+T+T2 |
| 29 | (1−T)(1+T) |
| 31 | 1+T+T2 |
| 37 | 1−T+T2 |
| 41 | 1+T+T2 |
| 43 | (1−T)(1+T) |
| 47 | 1+T+T2 |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | 1−T+T2 |
| 67 | 1−T+T2 |
| 71 | (1−T)(1+T) |
| 73 | 1+T+T2 |
| 79 | 1+T+T2 |
| 83 | (1−T)(1+T) |
| 89 | (1−T)2 |
| 97 | 1+T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37921869441011245738889142431, −9.511010005843341443851104686247, −8.868716737355728499862369022957, −8.148404660797174007245273401215, −7.49922333010491836577656038357, −6.54218389364111010314616188831, −5.26987348899802349293227188662, −3.87882397059735457716023899844, −2.63845126578247891358973399219, −1.66567777863511083269438526980,
1.66567777863511083269438526980, 2.63845126578247891358973399219, 3.87882397059735457716023899844, 5.26987348899802349293227188662, 6.54218389364111010314616188831, 7.49922333010491836577656038357, 8.148404660797174007245273401215, 8.868716737355728499862369022957, 9.511010005843341443851104686247, 10.37921869441011245738889142431