L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.866 − 1.5i)3-s + (−0.499 + 0.866i)4-s + 1.73·5-s + (0.866 − 1.5i)6-s + (0.5 − 0.866i)7-s − 0.999·8-s + (−1 + 1.73i)9-s + (0.866 + 1.49i)10-s + 1.73·12-s + (−0.866 − 0.5i)13-s + 0.999·14-s + (−1.49 − 2.59i)15-s + (−0.5 − 0.866i)16-s − 2·18-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.866 − 1.5i)3-s + (−0.499 + 0.866i)4-s + 1.73·5-s + (0.866 − 1.5i)6-s + (0.5 − 0.866i)7-s − 0.999·8-s + (−1 + 1.73i)9-s + (0.866 + 1.49i)10-s + 1.73·12-s + (−0.866 − 0.5i)13-s + 0.999·14-s + (−1.49 − 2.59i)15-s + (−0.5 − 0.866i)16-s − 2·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 + 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 + 0.252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.135094935\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.135094935\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.866 + 0.5i)T \) |
good | 3 | \( 1 + (0.866 + 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 - 1.73T + T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + 2T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63157422720753413224646223117, −9.704823732937147800103367237743, −8.548102689221723831599473891750, −7.37503432491491403919223077770, −7.13135071590034197549836871651, −6.04670808622422837535819918405, −5.57357652766491961380423211411, −4.72196742669697703902744266762, −2.70531240019805837894332022205, −1.40302546205491119264690240160,
1.94224099105061124587509288696, 3.01380030288860445188221829542, 4.59982418802210044406978793320, 5.02074188124954739642311961318, 5.79829003412315497443300531174, 6.44955491513201741717966213335, 8.774809372988672521730911430359, 9.414234912420366850561707505944, 9.871378168251772001822184329977, 10.63868279463485881251013491010