L(s) = 1 | + (1.22 − 2.12i)2-s + (−1.5 + 0.866i)3-s + (−2.01 − 3.49i)4-s + (1.93 + 1.11i)5-s + 4.25i·6-s − 4.98·8-s + (1.5 − 2.59i)9-s + (4.75 − 2.74i)10-s + (6.04 + 3.49i)12-s − 3.87·15-s + (−2.09 + 3.62i)16-s + (6.98 − 4.03i)17-s + (−3.68 − 6.38i)18-s + (−4.87 − 2.81i)19-s − 9.01i·20-s + ⋯ |
L(s) = 1 | + (0.868 − 1.50i)2-s + (−0.866 + 0.499i)3-s + (−1.00 − 1.74i)4-s + (0.866 + 0.499i)5-s + 1.73i·6-s − 1.76·8-s + (0.5 − 0.866i)9-s + (1.50 − 0.868i)10-s + (1.74 + 1.00i)12-s − 1.00·15-s + (−0.523 + 0.907i)16-s + (1.69 − 0.977i)17-s + (−0.868 − 1.50i)18-s + (−1.11 − 0.645i)19-s − 2.01i·20-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)(−0.580+0.814i)Λ(2−s)
Λ(s)=(=(735s/2ΓC(s+1/2)L(s)(−0.580+0.814i)Λ(1−s)
Degree: |
2 |
Conductor: |
735
= 3⋅5⋅72
|
Sign: |
−0.580+0.814i
|
Analytic conductor: |
5.86900 |
Root analytic conductor: |
2.42260 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ735(509,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 735, ( :1/2), −0.580+0.814i)
|
Particular Values
L(1) |
≈ |
0.908986−1.76453i |
L(21) |
≈ |
0.908986−1.76453i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.5−0.866i)T |
| 5 | 1+(−1.93−1.11i)T |
| 7 | 1 |
good | 2 | 1+(−1.22+2.12i)T+(−1−1.73i)T2 |
| 11 | 1+(5.5−9.52i)T2 |
| 13 | 1+13T2 |
| 17 | 1+(−6.98+4.03i)T+(8.5−14.7i)T2 |
| 19 | 1+(4.87+2.81i)T+(9.5+16.4i)T2 |
| 23 | 1+(−4.79+8.30i)T+(−11.5−19.9i)T2 |
| 29 | 1−29T2 |
| 31 | 1+(3.83−2.21i)T+(15.5−26.8i)T2 |
| 37 | 1+(18.5+32.0i)T2 |
| 41 | 1+41T2 |
| 43 | 1−43T2 |
| 47 | 1+(−0.886−0.511i)T+(23.5+40.7i)T2 |
| 53 | 1+(−4.71−8.17i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−29.5+51.0i)T2 |
| 61 | 1+(3.53+2.04i)T+(30.5+52.8i)T2 |
| 67 | 1+(33.5−58.0i)T2 |
| 71 | 1−71T2 |
| 73 | 1+(−36.5+63.2i)T2 |
| 79 | 1+(−2.91+5.05i)T+(−39.5−68.4i)T2 |
| 83 | 1−15.0iT−83T2 |
| 89 | 1+(−44.5−77.0i)T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.54969362307063072082102444035, −9.701429556246009728346093741217, −8.993672114981928276659238424352, −7.09513752469574518911916901465, −6.11074042885793722850563468179, −5.25457323704571158880267260437, −4.59454772333010287813250008586, −3.38170531237160392159990458876, −2.47235780953709382135403999091, −0.966597498509929579732482621957,
1.59381485743390049544816942015, 3.65949021584265358898443249810, 4.83079270396765441386165308547, 5.70999386846098580632322951646, 5.90511688251882993516150809223, 6.97642298077716148281432396715, 7.76127202010140399448932022227, 8.556283808726046721536824026812, 9.755869848860232466853927010991, 10.66487165883362775612501909145