Properties

Label 2-740-1.1-c1-0-11
Degree $2$
Conductor $740$
Sign $-1$
Analytic cond. $5.90892$
Root an. cond. $2.43082$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 7-s − 2·9-s − 3·11-s − 4·13-s − 15-s − 4·19-s − 21-s + 25-s − 5·27-s + 2·31-s − 3·33-s + 35-s + 37-s − 4·39-s + 3·41-s + 2·43-s + 2·45-s + 3·47-s − 6·49-s − 9·53-s + 3·55-s − 4·57-s + 2·61-s + 2·63-s + 4·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.377·7-s − 2/3·9-s − 0.904·11-s − 1.10·13-s − 0.258·15-s − 0.917·19-s − 0.218·21-s + 1/5·25-s − 0.962·27-s + 0.359·31-s − 0.522·33-s + 0.169·35-s + 0.164·37-s − 0.640·39-s + 0.468·41-s + 0.304·43-s + 0.298·45-s + 0.437·47-s − 6/7·49-s − 1.23·53-s + 0.404·55-s − 0.529·57-s + 0.256·61-s + 0.251·63-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(740\)    =    \(2^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(5.90892\)
Root analytic conductor: \(2.43082\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 740,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
37 \( 1 - T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 15 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 3 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.882130447506378962978172934692, −9.045668969928086126901178766839, −8.153762341243578669363344924181, −7.57337471682987225514682928288, −6.48137662811284452613419092940, −5.38893234254047555733787644652, −4.36492457617219525453698113063, −3.12763491076479958195283824705, −2.33839293362589242917551382192, 0, 2.33839293362589242917551382192, 3.12763491076479958195283824705, 4.36492457617219525453698113063, 5.38893234254047555733787644652, 6.48137662811284452613419092940, 7.57337471682987225514682928288, 8.153762341243578669363344924181, 9.045668969928086126901178766839, 9.882130447506378962978172934692

Graph of the $Z$-function along the critical line