Properties

Label 2-7488-1.1-c1-0-0
Degree $2$
Conductor $7488$
Sign $1$
Analytic cond. $59.7919$
Root an. cond. $7.73252$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.23·5-s − 3.80·7-s + 1.45·11-s − 13-s − 2.47·17-s − 8.50·19-s + 5.47·25-s − 4·29-s − 3.80·31-s + 12.3·35-s − 6.94·37-s + 0.763·41-s + 4.70·43-s − 10.8·47-s + 7.47·49-s − 12.9·53-s − 4.70·55-s − 10.8·59-s + 4.47·61-s + 3.23·65-s − 6.71·67-s − 1.45·71-s + 6·73-s − 5.52·77-s + 9.40·79-s − 13.7·83-s + 8.00·85-s + ⋯
L(s)  = 1  − 1.44·5-s − 1.43·7-s + 0.438·11-s − 0.277·13-s − 0.599·17-s − 1.95·19-s + 1.09·25-s − 0.742·29-s − 0.683·31-s + 2.08·35-s − 1.14·37-s + 0.119·41-s + 0.717·43-s − 1.58·47-s + 1.06·49-s − 1.77·53-s − 0.634·55-s − 1.41·59-s + 0.572·61-s + 0.401·65-s − 0.819·67-s − 0.172·71-s + 0.702·73-s − 0.629·77-s + 1.05·79-s − 1.51·83-s + 0.867·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7488\)    =    \(2^{6} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(59.7919\)
Root analytic conductor: \(7.73252\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.08498319221\)
\(L(\frac12)\) \(\approx\) \(0.08498319221\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 3.23T + 5T^{2} \)
7 \( 1 + 3.80T + 7T^{2} \)
11 \( 1 - 1.45T + 11T^{2} \)
17 \( 1 + 2.47T + 17T^{2} \)
19 \( 1 + 8.50T + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 4T + 29T^{2} \)
31 \( 1 + 3.80T + 31T^{2} \)
37 \( 1 + 6.94T + 37T^{2} \)
41 \( 1 - 0.763T + 41T^{2} \)
43 \( 1 - 4.70T + 43T^{2} \)
47 \( 1 + 10.8T + 47T^{2} \)
53 \( 1 + 12.9T + 53T^{2} \)
59 \( 1 + 10.8T + 59T^{2} \)
61 \( 1 - 4.47T + 61T^{2} \)
67 \( 1 + 6.71T + 67T^{2} \)
71 \( 1 + 1.45T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 9.40T + 79T^{2} \)
83 \( 1 + 13.7T + 83T^{2} \)
89 \( 1 - 2.29T + 89T^{2} \)
97 \( 1 + 6.94T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87445248377012004504580005115, −7.12038712560323827188302259977, −6.58109133760555366189383484047, −6.05397044650086889561124496393, −4.87082168806523763142938020043, −4.14335862429763903708205331624, −3.63081570881409617911009135426, −2.92983385038333727438188180265, −1.82372501400190526475164511943, −0.13798614801591980056398397173, 0.13798614801591980056398397173, 1.82372501400190526475164511943, 2.92983385038333727438188180265, 3.63081570881409617911009135426, 4.14335862429763903708205331624, 4.87082168806523763142938020043, 6.05397044650086889561124496393, 6.58109133760555366189383484047, 7.12038712560323827188302259977, 7.87445248377012004504580005115

Graph of the $Z$-function along the critical line