L(s) = 1 | − 3.23·5-s − 3.80·7-s + 1.45·11-s − 13-s − 2.47·17-s − 8.50·19-s + 5.47·25-s − 4·29-s − 3.80·31-s + 12.3·35-s − 6.94·37-s + 0.763·41-s + 4.70·43-s − 10.8·47-s + 7.47·49-s − 12.9·53-s − 4.70·55-s − 10.8·59-s + 4.47·61-s + 3.23·65-s − 6.71·67-s − 1.45·71-s + 6·73-s − 5.52·77-s + 9.40·79-s − 13.7·83-s + 8.00·85-s + ⋯ |
L(s) = 1 | − 1.44·5-s − 1.43·7-s + 0.438·11-s − 0.277·13-s − 0.599·17-s − 1.95·19-s + 1.09·25-s − 0.742·29-s − 0.683·31-s + 2.08·35-s − 1.14·37-s + 0.119·41-s + 0.717·43-s − 1.58·47-s + 1.06·49-s − 1.77·53-s − 0.634·55-s − 1.41·59-s + 0.572·61-s + 0.401·65-s − 0.819·67-s − 0.172·71-s + 0.702·73-s − 0.629·77-s + 1.05·79-s − 1.51·83-s + 0.867·85-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.08498319221\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.08498319221\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 + 3.23T + 5T^{2} \) |
| 7 | \( 1 + 3.80T + 7T^{2} \) |
| 11 | \( 1 - 1.45T + 11T^{2} \) |
| 17 | \( 1 + 2.47T + 17T^{2} \) |
| 19 | \( 1 + 8.50T + 19T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 + 3.80T + 31T^{2} \) |
| 37 | \( 1 + 6.94T + 37T^{2} \) |
| 41 | \( 1 - 0.763T + 41T^{2} \) |
| 43 | \( 1 - 4.70T + 43T^{2} \) |
| 47 | \( 1 + 10.8T + 47T^{2} \) |
| 53 | \( 1 + 12.9T + 53T^{2} \) |
| 59 | \( 1 + 10.8T + 59T^{2} \) |
| 61 | \( 1 - 4.47T + 61T^{2} \) |
| 67 | \( 1 + 6.71T + 67T^{2} \) |
| 71 | \( 1 + 1.45T + 71T^{2} \) |
| 73 | \( 1 - 6T + 73T^{2} \) |
| 79 | \( 1 - 9.40T + 79T^{2} \) |
| 83 | \( 1 + 13.7T + 83T^{2} \) |
| 89 | \( 1 - 2.29T + 89T^{2} \) |
| 97 | \( 1 + 6.94T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.87445248377012004504580005115, −7.12038712560323827188302259977, −6.58109133760555366189383484047, −6.05397044650086889561124496393, −4.87082168806523763142938020043, −4.14335862429763903708205331624, −3.63081570881409617911009135426, −2.92983385038333727438188180265, −1.82372501400190526475164511943, −0.13798614801591980056398397173,
0.13798614801591980056398397173, 1.82372501400190526475164511943, 2.92983385038333727438188180265, 3.63081570881409617911009135426, 4.14335862429763903708205331624, 4.87082168806523763142938020043, 6.05397044650086889561124496393, 6.58109133760555366189383484047, 7.12038712560323827188302259977, 7.87445248377012004504580005115