L(s) = 1 | − 3.04·5-s − 5.04·7-s + 3.80·11-s + 0.356·17-s − 6.13·19-s + 7.93·23-s + 4.29·25-s − 1.41·29-s + 5.78·31-s + 15.3·35-s + 0.0271·37-s + 9.18·41-s − 1.21·43-s + 9.56·47-s + 18.4·49-s + 4.73·53-s − 11.5·55-s − 13.5·59-s + 0.576·61-s − 7.95·67-s + 3.07·71-s − 14.0·73-s − 19.1·77-s − 0.841·79-s + 0.192·83-s − 1.08·85-s − 9.21·89-s + ⋯ |
L(s) = 1 | − 1.36·5-s − 1.90·7-s + 1.14·11-s + 0.0865·17-s − 1.40·19-s + 1.65·23-s + 0.859·25-s − 0.263·29-s + 1.03·31-s + 2.60·35-s + 0.00446·37-s + 1.43·41-s − 0.186·43-s + 1.39·47-s + 2.64·49-s + 0.650·53-s − 1.56·55-s − 1.76·59-s + 0.0738·61-s − 0.971·67-s + 0.365·71-s − 1.64·73-s − 2.18·77-s − 0.0946·79-s + 0.0211·83-s − 0.118·85-s − 0.976·89-s + ⋯ |
Λ(s)=(=(6084s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(6084s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1 |
good | 5 | 1+3.04T+5T2 |
| 7 | 1+5.04T+7T2 |
| 11 | 1−3.80T+11T2 |
| 17 | 1−0.356T+17T2 |
| 19 | 1+6.13T+19T2 |
| 23 | 1−7.93T+23T2 |
| 29 | 1+1.41T+29T2 |
| 31 | 1−5.78T+31T2 |
| 37 | 1−0.0271T+37T2 |
| 41 | 1−9.18T+41T2 |
| 43 | 1+1.21T+43T2 |
| 47 | 1−9.56T+47T2 |
| 53 | 1−4.73T+53T2 |
| 59 | 1+13.5T+59T2 |
| 61 | 1−0.576T+61T2 |
| 67 | 1+7.95T+67T2 |
| 71 | 1−3.07T+71T2 |
| 73 | 1+14.0T+73T2 |
| 79 | 1+0.841T+79T2 |
| 83 | 1−0.192T+83T2 |
| 89 | 1+9.21T+89T2 |
| 97 | 1+0.682T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.53321824871438486671398148279, −6.99462821104612010901884328128, −6.42881477547968832529253141383, −5.81245891049363640066049011533, −4.43159022131840788035908704789, −4.06444510319973456994043443641, −3.27693864199093471942948575493, −2.65677668054898014742846885276, −0.997017769899252746805142115898, 0,
0.997017769899252746805142115898, 2.65677668054898014742846885276, 3.27693864199093471942948575493, 4.06444510319973456994043443641, 4.43159022131840788035908704789, 5.81245891049363640066049011533, 6.42881477547968832529253141383, 6.99462821104612010901884328128, 7.53321824871438486671398148279