Properties

Label 2-800-100.23-c1-0-22
Degree $2$
Conductor $800$
Sign $0.331 + 0.943i$
Analytic cond. $6.38803$
Root an. cond. $2.52745$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.366 + 0.719i)3-s + (−0.581 − 2.15i)5-s + (1.82 + 1.82i)7-s + (1.37 − 1.89i)9-s + (−2.56 − 3.52i)11-s + (−0.435 − 2.74i)13-s + (1.34 − 1.21i)15-s + (−3.87 − 1.97i)17-s + (−0.914 − 2.81i)19-s + (−0.642 + 1.97i)21-s + (−0.658 + 4.15i)23-s + (−4.32 + 2.51i)25-s + (4.26 + 0.675i)27-s + (1.54 + 0.503i)29-s + (10.0 − 3.25i)31-s + ⋯
L(s)  = 1  + (0.211 + 0.415i)3-s + (−0.260 − 0.965i)5-s + (0.688 + 0.688i)7-s + (0.459 − 0.633i)9-s + (−0.772 − 1.06i)11-s + (−0.120 − 0.762i)13-s + (0.346 − 0.312i)15-s + (−0.940 − 0.479i)17-s + (−0.209 − 0.645i)19-s + (−0.140 + 0.431i)21-s + (−0.137 + 0.866i)23-s + (−0.864 + 0.502i)25-s + (0.821 + 0.130i)27-s + (0.287 + 0.0934i)29-s + (1.79 − 0.583i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.331 + 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.331 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(800\)    =    \(2^{5} \cdot 5^{2}\)
Sign: $0.331 + 0.943i$
Analytic conductor: \(6.38803\)
Root analytic conductor: \(2.52745\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{800} (223, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 800,\ (\ :1/2),\ 0.331 + 0.943i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.20190 - 0.851603i\)
\(L(\frac12)\) \(\approx\) \(1.20190 - 0.851603i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (0.581 + 2.15i)T \)
good3 \( 1 + (-0.366 - 0.719i)T + (-1.76 + 2.42i)T^{2} \)
7 \( 1 + (-1.82 - 1.82i)T + 7iT^{2} \)
11 \( 1 + (2.56 + 3.52i)T + (-3.39 + 10.4i)T^{2} \)
13 \( 1 + (0.435 + 2.74i)T + (-12.3 + 4.01i)T^{2} \)
17 \( 1 + (3.87 + 1.97i)T + (9.99 + 13.7i)T^{2} \)
19 \( 1 + (0.914 + 2.81i)T + (-15.3 + 11.1i)T^{2} \)
23 \( 1 + (0.658 - 4.15i)T + (-21.8 - 7.10i)T^{2} \)
29 \( 1 + (-1.54 - 0.503i)T + (23.4 + 17.0i)T^{2} \)
31 \( 1 + (-10.0 + 3.25i)T + (25.0 - 18.2i)T^{2} \)
37 \( 1 + (-3.29 + 0.521i)T + (35.1 - 11.4i)T^{2} \)
41 \( 1 + (8.06 + 5.86i)T + (12.6 + 38.9i)T^{2} \)
43 \( 1 + (-2.01 + 2.01i)T - 43iT^{2} \)
47 \( 1 + (0.681 - 0.347i)T + (27.6 - 38.0i)T^{2} \)
53 \( 1 + (4.65 - 2.37i)T + (31.1 - 42.8i)T^{2} \)
59 \( 1 + (0.111 + 0.0810i)T + (18.2 + 56.1i)T^{2} \)
61 \( 1 + (-9.77 + 7.10i)T + (18.8 - 58.0i)T^{2} \)
67 \( 1 + (-2.64 + 5.19i)T + (-39.3 - 54.2i)T^{2} \)
71 \( 1 + (0.559 + 0.181i)T + (57.4 + 41.7i)T^{2} \)
73 \( 1 + (-15.0 - 2.38i)T + (69.4 + 22.5i)T^{2} \)
79 \( 1 + (3.31 - 10.1i)T + (-63.9 - 46.4i)T^{2} \)
83 \( 1 + (-0.0483 - 0.0246i)T + (48.7 + 67.1i)T^{2} \)
89 \( 1 + (-8.88 - 12.2i)T + (-27.5 + 84.6i)T^{2} \)
97 \( 1 + (5.19 + 10.1i)T + (-57.0 + 78.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.957026346449480323423639903259, −9.140658471616190965786231161233, −8.437653247536228011419079026986, −7.896947671611974467857865070937, −6.53678243877993749032021096670, −5.37136402367076535630046124242, −4.82574623824258095186532461805, −3.68829667992421747797019336709, −2.46499658894099140313498655818, −0.72819696122503841075720534881, 1.75902572221140903975564417175, 2.64205415895498533742796837960, 4.26403450524420778163202299313, 4.73554558967451093186345424433, 6.46397098995040338683171626477, 6.98573712179029866807075097418, 7.87186867996742881365570982009, 8.346820739928880187188396258234, 9.962136721786674688120892214011, 10.36377496682543410823898965911

Graph of the $Z$-function along the critical line