L(s) = 1 | + (0.366 + 0.719i)3-s + (−0.581 − 2.15i)5-s + (1.82 + 1.82i)7-s + (1.37 − 1.89i)9-s + (−2.56 − 3.52i)11-s + (−0.435 − 2.74i)13-s + (1.34 − 1.21i)15-s + (−3.87 − 1.97i)17-s + (−0.914 − 2.81i)19-s + (−0.642 + 1.97i)21-s + (−0.658 + 4.15i)23-s + (−4.32 + 2.51i)25-s + (4.26 + 0.675i)27-s + (1.54 + 0.503i)29-s + (10.0 − 3.25i)31-s + ⋯ |
L(s) = 1 | + (0.211 + 0.415i)3-s + (−0.260 − 0.965i)5-s + (0.688 + 0.688i)7-s + (0.459 − 0.633i)9-s + (−0.772 − 1.06i)11-s + (−0.120 − 0.762i)13-s + (0.346 − 0.312i)15-s + (−0.940 − 0.479i)17-s + (−0.209 − 0.645i)19-s + (−0.140 + 0.431i)21-s + (−0.137 + 0.866i)23-s + (−0.864 + 0.502i)25-s + (0.821 + 0.130i)27-s + (0.287 + 0.0934i)29-s + (1.79 − 0.583i)31-s + ⋯ |
Λ(s)=(=(800s/2ΓC(s)L(s)(0.331+0.943i)Λ(2−s)
Λ(s)=(=(800s/2ΓC(s+1/2)L(s)(0.331+0.943i)Λ(1−s)
Degree: |
2 |
Conductor: |
800
= 25⋅52
|
Sign: |
0.331+0.943i
|
Analytic conductor: |
6.38803 |
Root analytic conductor: |
2.52745 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ800(223,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 800, ( :1/2), 0.331+0.943i)
|
Particular Values
L(1) |
≈ |
1.20190−0.851603i |
L(21) |
≈ |
1.20190−0.851603i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.581+2.15i)T |
good | 3 | 1+(−0.366−0.719i)T+(−1.76+2.42i)T2 |
| 7 | 1+(−1.82−1.82i)T+7iT2 |
| 11 | 1+(2.56+3.52i)T+(−3.39+10.4i)T2 |
| 13 | 1+(0.435+2.74i)T+(−12.3+4.01i)T2 |
| 17 | 1+(3.87+1.97i)T+(9.99+13.7i)T2 |
| 19 | 1+(0.914+2.81i)T+(−15.3+11.1i)T2 |
| 23 | 1+(0.658−4.15i)T+(−21.8−7.10i)T2 |
| 29 | 1+(−1.54−0.503i)T+(23.4+17.0i)T2 |
| 31 | 1+(−10.0+3.25i)T+(25.0−18.2i)T2 |
| 37 | 1+(−3.29+0.521i)T+(35.1−11.4i)T2 |
| 41 | 1+(8.06+5.86i)T+(12.6+38.9i)T2 |
| 43 | 1+(−2.01+2.01i)T−43iT2 |
| 47 | 1+(0.681−0.347i)T+(27.6−38.0i)T2 |
| 53 | 1+(4.65−2.37i)T+(31.1−42.8i)T2 |
| 59 | 1+(0.111+0.0810i)T+(18.2+56.1i)T2 |
| 61 | 1+(−9.77+7.10i)T+(18.8−58.0i)T2 |
| 67 | 1+(−2.64+5.19i)T+(−39.3−54.2i)T2 |
| 71 | 1+(0.559+0.181i)T+(57.4+41.7i)T2 |
| 73 | 1+(−15.0−2.38i)T+(69.4+22.5i)T2 |
| 79 | 1+(3.31−10.1i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−0.0483−0.0246i)T+(48.7+67.1i)T2 |
| 89 | 1+(−8.88−12.2i)T+(−27.5+84.6i)T2 |
| 97 | 1+(5.19+10.1i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.957026346449480323423639903259, −9.140658471616190965786231161233, −8.437653247536228011419079026986, −7.896947671611974467857865070937, −6.53678243877993749032021096670, −5.37136402367076535630046124242, −4.82574623824258095186532461805, −3.68829667992421747797019336709, −2.46499658894099140313498655818, −0.72819696122503841075720534881,
1.75902572221140903975564417175, 2.64205415895498533742796837960, 4.26403450524420778163202299313, 4.73554558967451093186345424433, 6.46397098995040338683171626477, 6.98573712179029866807075097418, 7.87186867996742881365570982009, 8.346820739928880187188396258234, 9.962136721786674688120892214011, 10.36377496682543410823898965911