L(s) = 1 | − 1.73·3-s − 7-s + 1.99·9-s + 1.73·19-s + 1.73·21-s + 23-s + 25-s − 1.73·27-s − 29-s + 1.73·41-s + 1.73·47-s + 49-s − 53-s − 2.99·57-s − 1.99·63-s + 67-s − 1.73·69-s − 71-s − 1.73·73-s − 1.73·75-s + 0.999·81-s + 1.73·87-s − 1.73·89-s + 1.73·97-s − 1.73·101-s − 107-s + 109-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 7-s + 1.99·9-s + 1.73·19-s + 1.73·21-s + 23-s + 25-s − 1.73·27-s − 29-s + 1.73·41-s + 1.73·47-s + 49-s − 53-s − 2.99·57-s − 1.99·63-s + 67-s − 1.73·69-s − 71-s − 1.73·73-s − 1.73·75-s + 0.999·81-s + 1.73·87-s − 1.73·89-s + 1.73·97-s − 1.73·101-s − 107-s + 109-s + ⋯ |
Λ(s)=(=(812s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(812s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
812
= 22⋅7⋅29
|
Sign: |
1
|
Analytic conductor: |
0.405240 |
Root analytic conductor: |
0.636585 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ812(405,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 812, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.5205691351 |
L(21) |
≈ |
0.5205691351 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 29 | 1+T |
good | 3 | 1+1.73T+T2 |
| 5 | 1−T2 |
| 11 | 1−T2 |
| 13 | 1−T2 |
| 17 | 1+T2 |
| 19 | 1−1.73T+T2 |
| 23 | 1−T+T2 |
| 31 | 1+T2 |
| 37 | 1−T2 |
| 41 | 1−1.73T+T2 |
| 43 | 1−T2 |
| 47 | 1−1.73T+T2 |
| 53 | 1+T+T2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1−T+T2 |
| 71 | 1+T+T2 |
| 73 | 1+1.73T+T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+1.73T+T2 |
| 97 | 1−1.73T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.64412267982860464758153320361, −9.733817669010682121482022605962, −9.096389976472646023040836909190, −7.42706365991508106006628374285, −6.93561321851813590221331096498, −5.91043855455644174829468058397, −5.39650767086687713977134317255, −4.32668210146249067638925109065, −3.04287168102832605721011115747, −0.982292206454670002103035977039,
0.982292206454670002103035977039, 3.04287168102832605721011115747, 4.32668210146249067638925109065, 5.39650767086687713977134317255, 5.91043855455644174829468058397, 6.93561321851813590221331096498, 7.42706365991508106006628374285, 9.096389976472646023040836909190, 9.733817669010682121482022605962, 10.64412267982860464758153320361