Properties

Label 812.1.g.c
Level 812812
Weight 11
Character orbit 812.g
Self dual yes
Analytic conductor 0.4050.405
Analytic rank 00
Dimension 22
Projective image D6D_{6}
CM discriminant -203
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [812,1,Mod(405,812)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(812, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("812.405");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 812=22729 812 = 2^{2} \cdot 7 \cdot 29
Weight: k k == 1 1
Character orbit: [χ][\chi] == 812.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.4052407902580.405240790258
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.4615408.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβq3q7+2q9+βq19+βq21+q23+q25βq27q29+βq41+βq47+q49q533q572q63+q67βq69++βq97+O(q100) q - \beta q^{3} - q^{7} + 2 q^{9} + \beta q^{19} + \beta q^{21} + q^{23} + q^{25} - \beta q^{27} - q^{29} + \beta q^{41} + \beta q^{47} + q^{49} - q^{53} - 3 q^{57} - 2 q^{63} + q^{67} - \beta q^{69} + \cdots + \beta q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q7+4q9+2q23+2q252q29+2q492q536q574q63+2q672q71+2q81+O(q100) 2 q - 2 q^{7} + 4 q^{9} + 2 q^{23} + 2 q^{25} - 2 q^{29} + 2 q^{49} - 2 q^{53} - 6 q^{57} - 4 q^{63} + 2 q^{67} - 2 q^{71} + 2 q^{81}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/812Z)×\left(\mathbb{Z}/812\mathbb{Z}\right)^\times.

nn 407407 465465 785785
χ(n)\chi(n) 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
405.1
1.73205
−1.73205
0 −1.73205 0 0 0 −1.00000 0 2.00000 0
405.2 0 1.73205 0 0 0 −1.00000 0 2.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
203.c odd 2 1 CM by Q(203)\Q(\sqrt{-203})
7.b odd 2 1 inner
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 812.1.g.c 2
4.b odd 2 1 3248.1.k.d 2
7.b odd 2 1 inner 812.1.g.c 2
28.d even 2 1 3248.1.k.d 2
29.b even 2 1 inner 812.1.g.c 2
116.d odd 2 1 3248.1.k.d 2
203.c odd 2 1 CM 812.1.g.c 2
812.c even 2 1 3248.1.k.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
812.1.g.c 2 1.a even 1 1 trivial
812.1.g.c 2 7.b odd 2 1 inner
812.1.g.c 2 29.b even 2 1 inner
812.1.g.c 2 203.c odd 2 1 CM
3248.1.k.d 2 4.b odd 2 1
3248.1.k.d 2 28.d even 2 1
3248.1.k.d 2 116.d odd 2 1
3248.1.k.d 2 812.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T323 T_{3}^{2} - 3 acting on S1new(812,[χ])S_{1}^{\mathrm{new}}(812, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T23 T^{2} - 3 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T23 T^{2} - 3 Copy content Toggle raw display
2323 (T1)2 (T - 1)^{2} Copy content Toggle raw display
2929 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 T23 T^{2} - 3 Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T23 T^{2} - 3 Copy content Toggle raw display
5353 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 (T1)2 (T - 1)^{2} Copy content Toggle raw display
7171 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
7373 T23 T^{2} - 3 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T23 T^{2} - 3 Copy content Toggle raw display
9797 T23 T^{2} - 3 Copy content Toggle raw display
show more
show less