Properties

Label 2-812-203.202-c0-0-0
Degree $2$
Conductor $812$
Sign $1$
Analytic cond. $0.405240$
Root an. cond. $0.636585$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73·3-s − 7-s + 1.99·9-s + 1.73·19-s + 1.73·21-s + 23-s + 25-s − 1.73·27-s − 29-s + 1.73·41-s + 1.73·47-s + 49-s − 53-s − 2.99·57-s − 1.99·63-s + 67-s − 1.73·69-s − 71-s − 1.73·73-s − 1.73·75-s + 0.999·81-s + 1.73·87-s − 1.73·89-s + 1.73·97-s − 1.73·101-s − 107-s + 109-s + ⋯
L(s)  = 1  − 1.73·3-s − 7-s + 1.99·9-s + 1.73·19-s + 1.73·21-s + 23-s + 25-s − 1.73·27-s − 29-s + 1.73·41-s + 1.73·47-s + 49-s − 53-s − 2.99·57-s − 1.99·63-s + 67-s − 1.73·69-s − 71-s − 1.73·73-s − 1.73·75-s + 0.999·81-s + 1.73·87-s − 1.73·89-s + 1.73·97-s − 1.73·101-s − 107-s + 109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 812 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(812\)    =    \(2^{2} \cdot 7 \cdot 29\)
Sign: $1$
Analytic conductor: \(0.405240\)
Root analytic conductor: \(0.636585\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{812} (405, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 812,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5205691351\)
\(L(\frac12)\) \(\approx\) \(0.5205691351\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
29 \( 1 + T \)
good3 \( 1 + 1.73T + T^{2} \)
5 \( 1 - T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 + T^{2} \)
19 \( 1 - 1.73T + T^{2} \)
23 \( 1 - T + T^{2} \)
31 \( 1 + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - 1.73T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 1.73T + T^{2} \)
53 \( 1 + T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 - T + T^{2} \)
71 \( 1 + T + T^{2} \)
73 \( 1 + 1.73T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + 1.73T + T^{2} \)
97 \( 1 - 1.73T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.64412267982860464758153320361, −9.733817669010682121482022605962, −9.096389976472646023040836909190, −7.42706365991508106006628374285, −6.93561321851813590221331096498, −5.91043855455644174829468058397, −5.39650767086687713977134317255, −4.32668210146249067638925109065, −3.04287168102832605721011115747, −0.982292206454670002103035977039, 0.982292206454670002103035977039, 3.04287168102832605721011115747, 4.32668210146249067638925109065, 5.39650767086687713977134317255, 5.91043855455644174829468058397, 6.93561321851813590221331096498, 7.42706365991508106006628374285, 9.096389976472646023040836909190, 9.733817669010682121482022605962, 10.64412267982860464758153320361

Graph of the $Z$-function along the critical line