L(s) = 1 | + (0.633 − 0.366i)3-s − 1.73·5-s + (−1.73 − i)7-s + (−1.23 + 2.13i)9-s + (1.73 + 3i)11-s + (1.59 − 3.23i)13-s + (−1.09 + 0.633i)15-s + (−3.23 + 5.59i)17-s + (0.633 − 1.09i)19-s − 1.46·21-s + (0.633 + 1.09i)23-s − 2.00·25-s + 4i·27-s + (−5.59 + 3.23i)29-s + 10.1i·31-s + ⋯ |
L(s) = 1 | + (0.366 − 0.211i)3-s − 0.774·5-s + (−0.654 − 0.377i)7-s + (−0.410 + 0.711i)9-s + (0.522 + 0.904i)11-s + (0.443 − 0.896i)13-s + (−0.283 + 0.163i)15-s + (−0.783 + 1.35i)17-s + (0.145 − 0.251i)19-s − 0.319·21-s + (0.132 + 0.228i)23-s − 0.400·25-s + 0.769i·27-s + (−1.03 + 0.600i)29-s + 1.83i·31-s + ⋯ |
Λ(s)=(=(832s/2ΓC(s)L(s)(−0.308−0.951i)Λ(2−s)
Λ(s)=(=(832s/2ΓC(s+1/2)L(s)(−0.308−0.951i)Λ(1−s)
Degree: |
2 |
Conductor: |
832
= 26⋅13
|
Sign: |
−0.308−0.951i
|
Analytic conductor: |
6.64355 |
Root analytic conductor: |
2.57750 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ832(673,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 832, ( :1/2), −0.308−0.951i)
|
Particular Values
L(1) |
≈ |
0.471656+0.648647i |
L(21) |
≈ |
0.471656+0.648647i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1+(−1.59+3.23i)T |
good | 3 | 1+(−0.633+0.366i)T+(1.5−2.59i)T2 |
| 5 | 1+1.73T+5T2 |
| 7 | 1+(1.73+i)T+(3.5+6.06i)T2 |
| 11 | 1+(−1.73−3i)T+(−5.5+9.52i)T2 |
| 17 | 1+(3.23−5.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.633+1.09i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.633−1.09i)T+(−11.5+19.9i)T2 |
| 29 | 1+(5.59−3.23i)T+(14.5−25.1i)T2 |
| 31 | 1−10.1iT−31T2 |
| 37 | 1+(0.598+1.03i)T+(−18.5+32.0i)T2 |
| 41 | 1+(4.5−2.59i)T+(20.5−35.5i)T2 |
| 43 | 1+(−7.26−4.19i)T+(21.5+37.2i)T2 |
| 47 | 1−5.66iT−47T2 |
| 53 | 1−5.53iT−53T2 |
| 59 | 1+(−6.46+11.1i)T+(−29.5−51.0i)T2 |
| 61 | 1+(6.40+3.69i)T+(30.5+52.8i)T2 |
| 67 | 1+(1.09+1.90i)T+(−33.5+58.0i)T2 |
| 71 | 1+(4.90+2.83i)T+(35.5+61.4i)T2 |
| 73 | 1−5.19iT−73T2 |
| 79 | 1−6T+79T2 |
| 83 | 1−9.46T+83T2 |
| 89 | 1+(−7.39+4.26i)T+(44.5−77.0i)T2 |
| 97 | 1+(5.19+3i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65679494974465807912135371129, −9.557680948120433187923311349020, −8.653684458413111282955743035154, −7.913715352367541783703451502710, −7.17247970340504704018879209695, −6.27071918000224318242778360308, −5.06224650750426655402974420933, −3.94786455650009749135626388239, −3.14921534986322303045871277928, −1.68689780505711253617367394809,
0.36881444338327829491246210731, 2.47934172792982154625167041294, 3.61045688886475114760253619558, 4.16366816529842385055638701453, 5.71267156591568723983466626995, 6.45633425979588760882457860160, 7.39893191148185263326444071232, 8.476254573469116374815935146526, 9.169579113922946061716344237283, 9.589136774981603846218848272997