L(s) = 1 | − i·2-s + (2.31 + 2.31i)3-s − 4-s + (2.31 − 2.31i)6-s + (3.26 − 3.26i)7-s + i·8-s + 7.68i·9-s + (−1.82 + 1.82i)11-s + (−2.31 − 2.31i)12-s + 0.145·13-s + (−3.26 − 3.26i)14-s + 16-s + (3.31 + 2.45i)17-s + 7.68·18-s − 2.06i·19-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (1.33 + 1.33i)3-s − 0.5·4-s + (0.943 − 0.943i)6-s + (1.23 − 1.23i)7-s + 0.353i·8-s + 2.56i·9-s + (−0.551 + 0.551i)11-s + (−0.667 − 0.667i)12-s + 0.0404·13-s + (−0.873 − 0.873i)14-s + 0.250·16-s + (0.803 + 0.595i)17-s + 1.81·18-s − 0.472i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.963 - 0.266i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.963 - 0.266i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.54635 + 0.345233i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.54635 + 0.345233i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (-3.31 - 2.45i)T \) |
good | 3 | \( 1 + (-2.31 - 2.31i)T + 3iT^{2} \) |
| 7 | \( 1 + (-3.26 + 3.26i)T - 7iT^{2} \) |
| 11 | \( 1 + (1.82 - 1.82i)T - 11iT^{2} \) |
| 13 | \( 1 - 0.145T + 13T^{2} \) |
| 19 | \( 1 + 2.06iT - 19T^{2} \) |
| 23 | \( 1 + (-3.41 + 3.41i)T - 23iT^{2} \) |
| 29 | \( 1 + (-2.10 - 2.10i)T + 29iT^{2} \) |
| 31 | \( 1 + (2.78 + 2.78i)T + 31iT^{2} \) |
| 37 | \( 1 + (-2.44 - 2.44i)T + 37iT^{2} \) |
| 41 | \( 1 + (5.53 - 5.53i)T - 41iT^{2} \) |
| 43 | \( 1 + 0.622iT - 43T^{2} \) |
| 47 | \( 1 + 8.47T + 47T^{2} \) |
| 53 | \( 1 + 6.68iT - 53T^{2} \) |
| 59 | \( 1 - 5.71iT - 59T^{2} \) |
| 61 | \( 1 + (-2.63 + 2.63i)T - 61iT^{2} \) |
| 67 | \( 1 + 1.58T + 67T^{2} \) |
| 71 | \( 1 + (-1.83 - 1.83i)T + 71iT^{2} \) |
| 73 | \( 1 + (-5.82 - 5.82i)T + 73iT^{2} \) |
| 79 | \( 1 + (-3.29 + 3.29i)T - 79iT^{2} \) |
| 83 | \( 1 + 8.91iT - 83T^{2} \) |
| 89 | \( 1 + 15.9T + 89T^{2} \) |
| 97 | \( 1 + (12.5 + 12.5i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15976179752424282608791789004, −9.677802728409923846196669978714, −8.485439407081151665654407286568, −8.126907817065276586493589386143, −7.21662609269066891607117631893, −5.10505174051850921781931328043, −4.60803122990648269219789936444, −3.81117219140134024895014239570, −2.85681274026975509876065877358, −1.64082146433733557784162174913,
1.34157374814247450900026558976, 2.47034490802670404638749481459, 3.45120159183274146684320412711, 5.11777002247425183365249151999, 5.87466675140136841831611926738, 6.98238946568047282764662768809, 7.82829240219325790931736557960, 8.224638802041945354705203512479, 8.887940120268604737110526368303, 9.632777179800772761198634076360