Properties

Label 2-850-17.13-c1-0-15
Degree 22
Conductor 850850
Sign 0.9630.266i0.963 - 0.266i
Analytic cond. 6.787286.78728
Root an. cond. 2.605242.60524
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + (2.31 + 2.31i)3-s − 4-s + (2.31 − 2.31i)6-s + (3.26 − 3.26i)7-s + i·8-s + 7.68i·9-s + (−1.82 + 1.82i)11-s + (−2.31 − 2.31i)12-s + 0.145·13-s + (−3.26 − 3.26i)14-s + 16-s + (3.31 + 2.45i)17-s + 7.68·18-s − 2.06i·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + (1.33 + 1.33i)3-s − 0.5·4-s + (0.943 − 0.943i)6-s + (1.23 − 1.23i)7-s + 0.353i·8-s + 2.56i·9-s + (−0.551 + 0.551i)11-s + (−0.667 − 0.667i)12-s + 0.0404·13-s + (−0.873 − 0.873i)14-s + 0.250·16-s + (0.803 + 0.595i)17-s + 1.81·18-s − 0.472i·19-s + ⋯

Functional equation

Λ(s)=(850s/2ΓC(s)L(s)=((0.9630.266i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.963 - 0.266i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(850s/2ΓC(s+1/2)L(s)=((0.9630.266i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.963 - 0.266i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 850850    =    252172 \cdot 5^{2} \cdot 17
Sign: 0.9630.266i0.963 - 0.266i
Analytic conductor: 6.787286.78728
Root analytic conductor: 2.605242.60524
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ850(251,)\chi_{850} (251, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 850, ( :1/2), 0.9630.266i)(2,\ 850,\ (\ :1/2),\ 0.963 - 0.266i)

Particular Values

L(1)L(1) \approx 2.54635+0.345233i2.54635 + 0.345233i
L(12)L(\frac12) \approx 2.54635+0.345233i2.54635 + 0.345233i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+iT 1 + iT
5 1 1
17 1+(3.312.45i)T 1 + (-3.31 - 2.45i)T
good3 1+(2.312.31i)T+3iT2 1 + (-2.31 - 2.31i)T + 3iT^{2}
7 1+(3.26+3.26i)T7iT2 1 + (-3.26 + 3.26i)T - 7iT^{2}
11 1+(1.821.82i)T11iT2 1 + (1.82 - 1.82i)T - 11iT^{2}
13 10.145T+13T2 1 - 0.145T + 13T^{2}
19 1+2.06iT19T2 1 + 2.06iT - 19T^{2}
23 1+(3.41+3.41i)T23iT2 1 + (-3.41 + 3.41i)T - 23iT^{2}
29 1+(2.102.10i)T+29iT2 1 + (-2.10 - 2.10i)T + 29iT^{2}
31 1+(2.78+2.78i)T+31iT2 1 + (2.78 + 2.78i)T + 31iT^{2}
37 1+(2.442.44i)T+37iT2 1 + (-2.44 - 2.44i)T + 37iT^{2}
41 1+(5.535.53i)T41iT2 1 + (5.53 - 5.53i)T - 41iT^{2}
43 1+0.622iT43T2 1 + 0.622iT - 43T^{2}
47 1+8.47T+47T2 1 + 8.47T + 47T^{2}
53 1+6.68iT53T2 1 + 6.68iT - 53T^{2}
59 15.71iT59T2 1 - 5.71iT - 59T^{2}
61 1+(2.63+2.63i)T61iT2 1 + (-2.63 + 2.63i)T - 61iT^{2}
67 1+1.58T+67T2 1 + 1.58T + 67T^{2}
71 1+(1.831.83i)T+71iT2 1 + (-1.83 - 1.83i)T + 71iT^{2}
73 1+(5.825.82i)T+73iT2 1 + (-5.82 - 5.82i)T + 73iT^{2}
79 1+(3.29+3.29i)T79iT2 1 + (-3.29 + 3.29i)T - 79iT^{2}
83 1+8.91iT83T2 1 + 8.91iT - 83T^{2}
89 1+15.9T+89T2 1 + 15.9T + 89T^{2}
97 1+(12.5+12.5i)T+97iT2 1 + (12.5 + 12.5i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.15976179752424282608791789004, −9.677802728409923846196669978714, −8.485439407081151665654407286568, −8.126907817065276586493589386143, −7.21662609269066891607117631893, −5.10505174051850921781931328043, −4.60803122990648269219789936444, −3.81117219140134024895014239570, −2.85681274026975509876065877358, −1.64082146433733557784162174913, 1.34157374814247450900026558976, 2.47034490802670404638749481459, 3.45120159183274146684320412711, 5.11777002247425183365249151999, 5.87466675140136841831611926738, 6.98238946568047282764662768809, 7.82829240219325790931736557960, 8.224638802041945354705203512479, 8.887940120268604737110526368303, 9.632777179800772761198634076360

Graph of the ZZ-function along the critical line