Properties

Label 850.2.h.n.251.4
Level $850$
Weight $2$
Character 850.251
Analytic conductor $6.787$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(251,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.h (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.23045668864.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 26x^{6} + 237x^{4} + 892x^{2} + 1156 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.4
Root \(-2.26843i\) of defining polynomial
Character \(\chi\) \(=\) 850.251
Dual form 850.2.h.n.701.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(2.31113 + 2.31113i) q^{3} -1.00000 q^{4} +(2.31113 - 2.31113i) q^{6} +(3.26843 - 3.26843i) q^{7} +1.00000i q^{8} +7.68265i q^{9} +O(q^{10})\) \(q-1.00000i q^{2} +(2.31113 + 2.31113i) q^{3} -1.00000 q^{4} +(2.31113 - 2.31113i) q^{6} +(3.26843 - 3.26843i) q^{7} +1.00000i q^{8} +7.68265i q^{9} +(-1.82843 + 1.82843i) q^{11} +(-2.31113 - 2.31113i) q^{12} +0.145782 q^{13} +(-3.26843 - 3.26843i) q^{14} +1.00000 q^{16} +(3.31113 + 2.45691i) q^{17} +7.68265 q^{18} -2.06038i q^{19} +15.1075 q^{21} +(1.82843 + 1.82843i) q^{22} +(3.41421 - 3.41421i) q^{23} +(-2.31113 + 2.31113i) q^{24} -0.145782i q^{26} +(-10.8222 + 10.8222i) q^{27} +(-3.26843 + 3.26843i) q^{28} +(2.10308 + 2.10308i) q^{29} +(-2.78573 - 2.78573i) q^{31} -1.00000i q^{32} -8.45147 q^{33} +(2.45691 - 3.31113i) q^{34} -7.68265i q^{36} +(2.44000 + 2.44000i) q^{37} -2.06038 q^{38} +(0.336921 + 0.336921i) q^{39} +(-5.53686 + 5.53686i) q^{41} -15.1075i q^{42} -0.622260i q^{43} +(1.82843 - 1.82843i) q^{44} +(-3.41421 - 3.41421i) q^{46} -8.47648 q^{47} +(2.31113 + 2.31113i) q^{48} -14.3653i q^{49} +(1.97421 + 13.3307i) q^{51} -0.145782 q^{52} -6.68265i q^{53} +(10.8222 + 10.8222i) q^{54} +(3.26843 + 3.26843i) q^{56} +(4.76182 - 4.76182i) q^{57} +(2.10308 - 2.10308i) q^{58} +5.71724i q^{59} +(2.63995 - 2.63995i) q^{61} +(-2.78573 + 2.78573i) q^{62} +(25.1102 + 25.1102i) q^{63} -1.00000 q^{64} +8.45147i q^{66} -1.58767 q^{67} +(-3.31113 - 2.45691i) q^{68} +15.7814 q^{69} +(1.83653 + 1.83653i) q^{71} -7.68265 q^{72} +(5.82220 + 5.82220i) q^{73} +(2.44000 - 2.44000i) q^{74} +2.06038i q^{76} +11.9522i q^{77} +(0.336921 - 0.336921i) q^{78} +(3.29344 - 3.29344i) q^{79} -26.9751 q^{81} +(5.53686 + 5.53686i) q^{82} -8.91382i q^{83} -15.1075 q^{84} -0.622260 q^{86} +9.72100i q^{87} +(-1.82843 - 1.82843i) q^{88} -15.9787 q^{89} +(0.476478 - 0.476478i) q^{91} +(-3.41421 + 3.41421i) q^{92} -12.8764i q^{93} +8.47648i q^{94} +(2.31113 - 2.31113i) q^{96} +(-12.5814 - 12.5814i) q^{97} -14.3653 q^{98} +(-14.0472 - 14.0472i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} + 4 q^{7} + 8 q^{11} + 12 q^{13} - 4 q^{14} + 8 q^{16} + 8 q^{17} + 28 q^{18} + 16 q^{21} - 8 q^{22} + 16 q^{23} - 12 q^{27} - 4 q^{28} + 24 q^{29} + 4 q^{31} - 16 q^{33} + 12 q^{34} + 20 q^{37} - 20 q^{38} - 4 q^{39} - 8 q^{44} - 16 q^{46} - 20 q^{47} + 4 q^{51} - 12 q^{52} + 12 q^{54} + 4 q^{56} - 40 q^{57} + 24 q^{58} - 16 q^{61} + 4 q^{62} + 64 q^{63} - 8 q^{64} + 16 q^{67} - 8 q^{68} + 8 q^{69} + 4 q^{71} - 28 q^{72} - 28 q^{73} + 20 q^{74} - 4 q^{78} + 8 q^{79} - 8 q^{81} - 16 q^{84} + 32 q^{86} + 8 q^{88} - 44 q^{89} - 44 q^{91} - 16 q^{92} - 20 q^{97} - 48 q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.31113 + 2.31113i 1.33433 + 1.33433i 0.901451 + 0.432880i \(0.142503\pi\)
0.432880 + 0.901451i \(0.357497\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.31113 2.31113i 0.943515 0.943515i
\(7\) 3.26843 3.26843i 1.23535 1.23535i 0.273471 0.961880i \(-0.411828\pi\)
0.961880 0.273471i \(-0.0881717\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 7.68265i 2.56088i
\(10\) 0 0
\(11\) −1.82843 + 1.82843i −0.551292 + 0.551292i −0.926813 0.375522i \(-0.877463\pi\)
0.375522 + 0.926813i \(0.377463\pi\)
\(12\) −2.31113 2.31113i −0.667166 0.667166i
\(13\) 0.145782 0.0404326 0.0202163 0.999796i \(-0.493565\pi\)
0.0202163 + 0.999796i \(0.493565\pi\)
\(14\) −3.26843 3.26843i −0.873525 0.873525i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.31113 + 2.45691i 0.803067 + 0.595889i
\(18\) 7.68265 1.81082
\(19\) 2.06038i 0.472685i −0.971670 0.236342i \(-0.924051\pi\)
0.971670 0.236342i \(-0.0759487\pi\)
\(20\) 0 0
\(21\) 15.1075 3.29674
\(22\) 1.82843 + 1.82843i 0.389822 + 0.389822i
\(23\) 3.41421 3.41421i 0.711913 0.711913i −0.255022 0.966935i \(-0.582083\pi\)
0.966935 + 0.255022i \(0.0820828\pi\)
\(24\) −2.31113 + 2.31113i −0.471757 + 0.471757i
\(25\) 0 0
\(26\) 0.145782i 0.0285902i
\(27\) −10.8222 + 10.8222i −2.08273 + 2.08273i
\(28\) −3.26843 + 3.26843i −0.617676 + 0.617676i
\(29\) 2.10308 + 2.10308i 0.390533 + 0.390533i 0.874877 0.484345i \(-0.160942\pi\)
−0.484345 + 0.874877i \(0.660942\pi\)
\(30\) 0 0
\(31\) −2.78573 2.78573i −0.500332 0.500332i 0.411209 0.911541i \(-0.365107\pi\)
−0.911541 + 0.411209i \(0.865107\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −8.45147 −1.47121
\(34\) 2.45691 3.31113i 0.421357 0.567854i
\(35\) 0 0
\(36\) 7.68265i 1.28044i
\(37\) 2.44000 + 2.44000i 0.401134 + 0.401134i 0.878633 0.477498i \(-0.158456\pi\)
−0.477498 + 0.878633i \(0.658456\pi\)
\(38\) −2.06038 −0.334239
\(39\) 0.336921 + 0.336921i 0.0539505 + 0.0539505i
\(40\) 0 0
\(41\) −5.53686 + 5.53686i −0.864713 + 0.864713i −0.991881 0.127168i \(-0.959411\pi\)
0.127168 + 0.991881i \(0.459411\pi\)
\(42\) 15.1075i 2.33114i
\(43\) 0.622260i 0.0948938i −0.998874 0.0474469i \(-0.984892\pi\)
0.998874 0.0474469i \(-0.0151085\pi\)
\(44\) 1.82843 1.82843i 0.275646 0.275646i
\(45\) 0 0
\(46\) −3.41421 3.41421i −0.503398 0.503398i
\(47\) −8.47648 −1.23642 −0.618211 0.786012i \(-0.712142\pi\)
−0.618211 + 0.786012i \(0.712142\pi\)
\(48\) 2.31113 + 2.31113i 0.333583 + 0.333583i
\(49\) 14.3653i 2.05218i
\(50\) 0 0
\(51\) 1.97421 + 13.3307i 0.276445 + 1.86667i
\(52\) −0.145782 −0.0202163
\(53\) 6.68265i 0.917932i −0.888454 0.458966i \(-0.848220\pi\)
0.888454 0.458966i \(-0.151780\pi\)
\(54\) 10.8222 + 10.8222i 1.47272 + 1.47272i
\(55\) 0 0
\(56\) 3.26843 + 3.26843i 0.436763 + 0.436763i
\(57\) 4.76182 4.76182i 0.630718 0.630718i
\(58\) 2.10308 2.10308i 0.276148 0.276148i
\(59\) 5.71724i 0.744321i 0.928168 + 0.372161i \(0.121383\pi\)
−0.928168 + 0.372161i \(0.878617\pi\)
\(60\) 0 0
\(61\) 2.63995 2.63995i 0.338011 0.338011i −0.517608 0.855618i \(-0.673177\pi\)
0.855618 + 0.517608i \(0.173177\pi\)
\(62\) −2.78573 + 2.78573i −0.353788 + 0.353788i
\(63\) 25.1102 + 25.1102i 3.16359 + 3.16359i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 8.45147i 1.04030i
\(67\) −1.58767 −0.193964 −0.0969822 0.995286i \(-0.530919\pi\)
−0.0969822 + 0.995286i \(0.530919\pi\)
\(68\) −3.31113 2.45691i −0.401534 0.297944i
\(69\) 15.7814 1.89986
\(70\) 0 0
\(71\) 1.83653 + 1.83653i 0.217956 + 0.217956i 0.807637 0.589680i \(-0.200746\pi\)
−0.589680 + 0.807637i \(0.700746\pi\)
\(72\) −7.68265 −0.905408
\(73\) 5.82220 + 5.82220i 0.681437 + 0.681437i 0.960324 0.278887i \(-0.0899654\pi\)
−0.278887 + 0.960324i \(0.589965\pi\)
\(74\) 2.44000 2.44000i 0.283645 0.283645i
\(75\) 0 0
\(76\) 2.06038i 0.236342i
\(77\) 11.9522i 1.36208i
\(78\) 0.336921 0.336921i 0.0381488 0.0381488i
\(79\) 3.29344 3.29344i 0.370541 0.370541i −0.497133 0.867674i \(-0.665614\pi\)
0.867674 + 0.497133i \(0.165614\pi\)
\(80\) 0 0
\(81\) −26.9751 −2.99723
\(82\) 5.53686 + 5.53686i 0.611444 + 0.611444i
\(83\) 8.91382i 0.978419i −0.872166 0.489210i \(-0.837285\pi\)
0.872166 0.489210i \(-0.162715\pi\)
\(84\) −15.1075 −1.64837
\(85\) 0 0
\(86\) −0.622260 −0.0671001
\(87\) 9.72100i 1.04220i
\(88\) −1.82843 1.82843i −0.194911 0.194911i
\(89\) −15.9787 −1.69374 −0.846872 0.531797i \(-0.821517\pi\)
−0.846872 + 0.531797i \(0.821517\pi\)
\(90\) 0 0
\(91\) 0.476478 0.476478i 0.0499485 0.0499485i
\(92\) −3.41421 + 3.41421i −0.355956 + 0.355956i
\(93\) 12.8764i 1.33522i
\(94\) 8.47648i 0.874282i
\(95\) 0 0
\(96\) 2.31113 2.31113i 0.235879 0.235879i
\(97\) −12.5814 12.5814i −1.27745 1.27745i −0.942089 0.335363i \(-0.891141\pi\)
−0.335363 0.942089i \(-0.608859\pi\)
\(98\) −14.3653 −1.45111
\(99\) −14.0472 14.0472i −1.41179 1.41179i
\(100\) 0 0
\(101\) 7.65685 0.761885 0.380943 0.924599i \(-0.375599\pi\)
0.380943 + 0.924599i \(0.375599\pi\)
\(102\) 13.3307 1.97421i 1.31994 0.195476i
\(103\) −8.07295 −0.795451 −0.397726 0.917504i \(-0.630200\pi\)
−0.397726 + 0.917504i \(0.630200\pi\)
\(104\) 0.145782i 0.0142951i
\(105\) 0 0
\(106\) −6.68265 −0.649076
\(107\) −1.68265 1.68265i −0.162667 0.162667i 0.621080 0.783747i \(-0.286694\pi\)
−0.783747 + 0.621080i \(0.786694\pi\)
\(108\) 10.8222 10.8222i 1.04137 1.04137i
\(109\) −2.10308 + 2.10308i −0.201439 + 0.201439i −0.800616 0.599177i \(-0.795494\pi\)
0.599177 + 0.800616i \(0.295494\pi\)
\(110\) 0 0
\(111\) 11.2783i 1.07049i
\(112\) 3.26843 3.26843i 0.308838 0.308838i
\(113\) 7.19994 7.19994i 0.677314 0.677314i −0.282078 0.959391i \(-0.591024\pi\)
0.959391 + 0.282078i \(0.0910237\pi\)
\(114\) −4.76182 4.76182i −0.445985 0.445985i
\(115\) 0 0
\(116\) −2.10308 2.10308i −0.195266 0.195266i
\(117\) 1.11999i 0.103543i
\(118\) 5.71724 0.526315
\(119\) 18.8525 2.79195i 1.72820 0.255938i
\(120\) 0 0
\(121\) 4.31371i 0.392155i
\(122\) −2.63995 2.63995i −0.239010 0.239010i
\(123\) −25.5928 −2.30763
\(124\) 2.78573 + 2.78573i 0.250166 + 0.250166i
\(125\) 0 0
\(126\) 25.1102 25.1102i 2.23699 2.23699i
\(127\) 11.1841i 0.992432i −0.868199 0.496216i \(-0.834722\pi\)
0.868199 0.496216i \(-0.165278\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 1.43812 1.43812i 0.126620 0.126620i
\(130\) 0 0
\(131\) 10.5715 + 10.5715i 0.923633 + 0.923633i 0.997284 0.0736515i \(-0.0234653\pi\)
−0.0736515 + 0.997284i \(0.523465\pi\)
\(132\) 8.45147 0.735606
\(133\) −6.73423 6.73423i −0.583932 0.583932i
\(134\) 1.58767i 0.137153i
\(135\) 0 0
\(136\) −2.45691 + 3.31113i −0.210678 + 0.283927i
\(137\) 14.1583 1.20963 0.604815 0.796366i \(-0.293247\pi\)
0.604815 + 0.796366i \(0.293247\pi\)
\(138\) 15.7814i 1.34340i
\(139\) −15.0729 15.0729i −1.27847 1.27847i −0.941524 0.336947i \(-0.890606\pi\)
−0.336947 0.941524i \(-0.609394\pi\)
\(140\) 0 0
\(141\) −19.5902 19.5902i −1.64980 1.64980i
\(142\) 1.83653 1.83653i 0.154118 0.154118i
\(143\) −0.266552 + 0.266552i −0.0222902 + 0.0222902i
\(144\) 7.68265i 0.640220i
\(145\) 0 0
\(146\) 5.82220 5.82220i 0.481849 0.481849i
\(147\) 33.2001 33.2001i 2.73829 2.73829i
\(148\) −2.44000 2.44000i −0.200567 0.200567i
\(149\) −10.2791 −0.842098 −0.421049 0.907038i \(-0.638338\pi\)
−0.421049 + 0.907038i \(0.638338\pi\)
\(150\) 0 0
\(151\) 6.53686i 0.531962i −0.963978 0.265981i \(-0.914304\pi\)
0.963978 0.265981i \(-0.0856959\pi\)
\(152\) 2.06038 0.167119
\(153\) −18.8756 + 25.4382i −1.52600 + 2.05656i
\(154\) 11.9522 0.963134
\(155\) 0 0
\(156\) −0.336921 0.336921i −0.0269753 0.0269753i
\(157\) −12.4337 −0.992317 −0.496159 0.868232i \(-0.665257\pi\)
−0.496159 + 0.868232i \(0.665257\pi\)
\(158\) −3.29344 3.29344i −0.262012 0.262012i
\(159\) 15.4445 15.4445i 1.22483 1.22483i
\(160\) 0 0
\(161\) 22.3182i 1.75892i
\(162\) 26.9751i 2.11936i
\(163\) 0.562654 0.562654i 0.0440705 0.0440705i −0.684728 0.728799i \(-0.740079\pi\)
0.728799 + 0.684728i \(0.240079\pi\)
\(164\) 5.53686 5.53686i 0.432356 0.432356i
\(165\) 0 0
\(166\) −8.91382 −0.691847
\(167\) 3.36263 + 3.36263i 0.260208 + 0.260208i 0.825139 0.564930i \(-0.191097\pi\)
−0.564930 + 0.825139i \(0.691097\pi\)
\(168\) 15.1075i 1.16557i
\(169\) −12.9787 −0.998365
\(170\) 0 0
\(171\) 15.8292 1.21049
\(172\) 0.622260i 0.0474469i
\(173\) −9.00188 9.00188i −0.684400 0.684400i 0.276588 0.960989i \(-0.410796\pi\)
−0.960989 + 0.276588i \(0.910796\pi\)
\(174\) 9.72100 0.736947
\(175\) 0 0
\(176\) −1.82843 + 1.82843i −0.137823 + 0.137823i
\(177\) −13.2133 + 13.2133i −0.993171 + 0.993171i
\(178\) 15.9787i 1.19766i
\(179\) 0.170794i 0.0127658i 0.999980 + 0.00638288i \(0.00203175\pi\)
−0.999980 + 0.00638288i \(0.997968\pi\)
\(180\) 0 0
\(181\) 3.32882 3.32882i 0.247429 0.247429i −0.572486 0.819915i \(-0.694021\pi\)
0.819915 + 0.572486i \(0.194021\pi\)
\(182\) −0.476478 0.476478i −0.0353189 0.0353189i
\(183\) 12.2025 0.902036
\(184\) 3.41421 + 3.41421i 0.251699 + 0.251699i
\(185\) 0 0
\(186\) −12.8764 −0.944141
\(187\) −10.5464 + 1.56188i −0.771232 + 0.114216i
\(188\) 8.47648 0.618211
\(189\) 70.7433i 5.14581i
\(190\) 0 0
\(191\) 4.79461 0.346926 0.173463 0.984840i \(-0.444504\pi\)
0.173463 + 0.984840i \(0.444504\pi\)
\(192\) −2.31113 2.31113i −0.166791 0.166791i
\(193\) −10.6819 + 10.6819i −0.768898 + 0.768898i −0.977912 0.209015i \(-0.932974\pi\)
0.209015 + 0.977912i \(0.432974\pi\)
\(194\) −12.5814 + 12.5814i −0.903295 + 0.903295i
\(195\) 0 0
\(196\) 14.3653i 1.02609i
\(197\) −4.85610 + 4.85610i −0.345983 + 0.345983i −0.858611 0.512628i \(-0.828672\pi\)
0.512628 + 0.858611i \(0.328672\pi\)
\(198\) −14.0472 + 14.0472i −0.998288 + 0.998288i
\(199\) −2.12810 2.12810i −0.150857 0.150857i 0.627644 0.778501i \(-0.284019\pi\)
−0.778501 + 0.627644i \(0.784019\pi\)
\(200\) 0 0
\(201\) −3.66930 3.66930i −0.258813 0.258813i
\(202\) 7.65685i 0.538734i
\(203\) 13.7476 0.964890
\(204\) −1.97421 13.3307i −0.138222 0.933335i
\(205\) 0 0
\(206\) 8.07295i 0.562469i
\(207\) 26.2302 + 26.2302i 1.82312 + 1.82312i
\(208\) 0.145782 0.0101082
\(209\) 3.76726 + 3.76726i 0.260587 + 0.260587i
\(210\) 0 0
\(211\) −1.47648 + 1.47648i −0.101645 + 0.101645i −0.756100 0.654456i \(-0.772898\pi\)
0.654456 + 0.756100i \(0.272898\pi\)
\(212\) 6.68265i 0.458966i
\(213\) 8.48893i 0.581652i
\(214\) −1.68265 + 1.68265i −0.115023 + 0.115023i
\(215\) 0 0
\(216\) −10.8222 10.8222i −0.736358 0.736358i
\(217\) −18.2099 −1.23617
\(218\) 2.10308 + 2.10308i 0.142439 + 0.142439i
\(219\) 26.9117i 1.81853i
\(220\) 0 0
\(221\) 0.482703 + 0.358173i 0.0324701 + 0.0240934i
\(222\) 11.2783 0.756952
\(223\) 22.6186i 1.51465i −0.653036 0.757327i \(-0.726505\pi\)
0.653036 0.757327i \(-0.273495\pi\)
\(224\) −3.26843 3.26843i −0.218381 0.218381i
\(225\) 0 0
\(226\) −7.19994 7.19994i −0.478933 0.478933i
\(227\) 8.29868 8.29868i 0.550803 0.550803i −0.375870 0.926673i \(-0.622656\pi\)
0.926673 + 0.375870i \(0.122656\pi\)
\(228\) −4.76182 + 4.76182i −0.315359 + 0.315359i
\(229\) 25.8897i 1.71084i −0.517935 0.855420i \(-0.673299\pi\)
0.517935 0.855420i \(-0.326701\pi\)
\(230\) 0 0
\(231\) −27.6230 + 27.6230i −1.81746 + 1.81746i
\(232\) −2.10308 + 2.10308i −0.138074 + 0.138074i
\(233\) −9.65141 9.65141i −0.632285 0.632285i 0.316356 0.948641i \(-0.397541\pi\)
−0.948641 + 0.316356i \(0.897541\pi\)
\(234\) 1.11999 0.0732161
\(235\) 0 0
\(236\) 5.71724i 0.372161i
\(237\) 15.2232 0.988850
\(238\) −2.79195 18.8525i −0.180975 1.22202i
\(239\) −25.4736 −1.64775 −0.823875 0.566771i \(-0.808192\pi\)
−0.823875 + 0.566771i \(0.808192\pi\)
\(240\) 0 0
\(241\) 5.65763 + 5.65763i 0.364440 + 0.364440i 0.865445 0.501005i \(-0.167036\pi\)
−0.501005 + 0.865445i \(0.667036\pi\)
\(242\) 4.31371 0.277296
\(243\) −29.8764 29.8764i −1.91657 1.91657i
\(244\) −2.63995 + 2.63995i −0.169005 + 0.169005i
\(245\) 0 0
\(246\) 25.5928i 1.63174i
\(247\) 0.300367i 0.0191119i
\(248\) 2.78573 2.78573i 0.176894 0.176894i
\(249\) 20.6010 20.6010i 1.30554 1.30554i
\(250\) 0 0
\(251\) 8.60981 0.543446 0.271723 0.962375i \(-0.412406\pi\)
0.271723 + 0.962375i \(0.412406\pi\)
\(252\) −25.1102 25.1102i −1.58179 1.58179i
\(253\) 12.4853i 0.784943i
\(254\) −11.1841 −0.701755
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 13.7976i 0.860670i 0.902669 + 0.430335i \(0.141605\pi\)
−0.902669 + 0.430335i \(0.858395\pi\)
\(258\) −1.43812 1.43812i −0.0895337 0.0895337i
\(259\) 15.9500 0.991083
\(260\) 0 0
\(261\) −16.1572 + 16.1572i −1.00011 + 1.00011i
\(262\) 10.5715 10.5715i 0.653107 0.653107i
\(263\) 22.3271i 1.37674i 0.725357 + 0.688372i \(0.241675\pi\)
−0.725357 + 0.688372i \(0.758325\pi\)
\(264\) 8.45147i 0.520152i
\(265\) 0 0
\(266\) −6.73423 + 6.73423i −0.412902 + 0.412902i
\(267\) −36.9290 36.9290i −2.26002 2.26002i
\(268\) 1.58767 0.0969822
\(269\) 11.2747 + 11.2747i 0.687428 + 0.687428i 0.961663 0.274235i \(-0.0884246\pi\)
−0.274235 + 0.961663i \(0.588425\pi\)
\(270\) 0 0
\(271\) −30.8765 −1.87561 −0.937806 0.347159i \(-0.887146\pi\)
−0.937806 + 0.347159i \(0.887146\pi\)
\(272\) 3.31113 + 2.45691i 0.200767 + 0.148972i
\(273\) 2.20241 0.133296
\(274\) 14.1583i 0.855337i
\(275\) 0 0
\(276\) −15.7814 −0.949928
\(277\) 19.7325 + 19.7325i 1.18561 + 1.18561i 0.978269 + 0.207340i \(0.0664805\pi\)
0.207340 + 0.978269i \(0.433519\pi\)
\(278\) −15.0729 + 15.0729i −0.904015 + 0.904015i
\(279\) 21.4018 21.4018i 1.28129 1.28129i
\(280\) 0 0
\(281\) 10.2879i 0.613726i −0.951754 0.306863i \(-0.900721\pi\)
0.951754 0.306863i \(-0.0992793\pi\)
\(282\) −19.5902 + 19.5902i −1.16658 + 1.16658i
\(283\) 8.51730 8.51730i 0.506301 0.506301i −0.407088 0.913389i \(-0.633456\pi\)
0.913389 + 0.407088i \(0.133456\pi\)
\(284\) −1.83653 1.83653i −0.108978 0.108978i
\(285\) 0 0
\(286\) 0.266552 + 0.266552i 0.0157615 + 0.0157615i
\(287\) 36.1937i 2.13645i
\(288\) 7.68265 0.452704
\(289\) 4.92717 + 16.2703i 0.289833 + 0.957077i
\(290\) 0 0
\(291\) 58.1547i 3.40909i
\(292\) −5.82220 5.82220i −0.340719 0.340719i
\(293\) 30.6024 1.78781 0.893906 0.448255i \(-0.147954\pi\)
0.893906 + 0.448255i \(0.147954\pi\)
\(294\) −33.2001 33.2001i −1.93627 1.93627i
\(295\) 0 0
\(296\) −2.44000 + 2.44000i −0.141822 + 0.141822i
\(297\) 39.5752i 2.29639i
\(298\) 10.2791i 0.595453i
\(299\) 0.497731 0.497731i 0.0287845 0.0287845i
\(300\) 0 0
\(301\) −2.03382 2.03382i −0.117227 0.117227i
\(302\) −6.53686 −0.376154
\(303\) 17.6960 + 17.6960i 1.01661 + 1.01661i
\(304\) 2.06038i 0.118171i
\(305\) 0 0
\(306\) 25.4382 + 18.8756i 1.45421 + 1.07905i
\(307\) 13.6268 0.777722 0.388861 0.921296i \(-0.372869\pi\)
0.388861 + 0.921296i \(0.372869\pi\)
\(308\) 11.9522i 0.681039i
\(309\) −18.6576 18.6576i −1.06140 1.06140i
\(310\) 0 0
\(311\) 8.72792 + 8.72792i 0.494915 + 0.494915i 0.909851 0.414936i \(-0.136196\pi\)
−0.414936 + 0.909851i \(0.636196\pi\)
\(312\) −0.336921 + 0.336921i −0.0190744 + 0.0190744i
\(313\) 8.73345 8.73345i 0.493644 0.493644i −0.415809 0.909452i \(-0.636501\pi\)
0.909452 + 0.415809i \(0.136501\pi\)
\(314\) 12.4337i 0.701674i
\(315\) 0 0
\(316\) −3.29344 + 3.29344i −0.185271 + 0.185271i
\(317\) −11.3288 + 11.3288i −0.636290 + 0.636290i −0.949638 0.313348i \(-0.898549\pi\)
0.313348 + 0.949638i \(0.398549\pi\)
\(318\) −15.4445 15.4445i −0.866082 0.866082i
\(319\) −7.69067 −0.430595
\(320\) 0 0
\(321\) 7.77762i 0.434105i
\(322\) −22.3182 −1.24375
\(323\) 5.06218 6.82220i 0.281667 0.379597i
\(324\) 26.9751 1.49862
\(325\) 0 0
\(326\) −0.562654 0.562654i −0.0311625 0.0311625i
\(327\) −9.72100 −0.537572
\(328\) −5.53686 5.53686i −0.305722 0.305722i
\(329\) −27.7048 + 27.7048i −1.52741 + 1.52741i
\(330\) 0 0
\(331\) 10.5494i 0.579849i 0.957050 + 0.289924i \(0.0936302\pi\)
−0.957050 + 0.289924i \(0.906370\pi\)
\(332\) 8.91382i 0.489210i
\(333\) −18.7457 + 18.7457i −1.02726 + 1.02726i
\(334\) 3.36263 3.36263i 0.183995 0.183995i
\(335\) 0 0
\(336\) 15.1075 0.824184
\(337\) −8.95840 8.95840i −0.487995 0.487995i 0.419678 0.907673i \(-0.362143\pi\)
−0.907673 + 0.419678i \(0.862143\pi\)
\(338\) 12.9787i 0.705951i
\(339\) 33.2800 1.80752
\(340\) 0 0
\(341\) 10.1870 0.551657
\(342\) 15.8292i 0.855945i
\(343\) −24.0729 24.0729i −1.29982 1.29982i
\(344\) 0.622260 0.0335500
\(345\) 0 0
\(346\) −9.00188 + 9.00188i −0.483944 + 0.483944i
\(347\) −2.59024 + 2.59024i −0.139052 + 0.139052i −0.773206 0.634155i \(-0.781348\pi\)
0.634155 + 0.773206i \(0.281348\pi\)
\(348\) 9.72100i 0.521100i
\(349\) 28.5120i 1.52621i 0.646274 + 0.763105i \(0.276326\pi\)
−0.646274 + 0.763105i \(0.723674\pi\)
\(350\) 0 0
\(351\) −1.57768 + 1.57768i −0.0842104 + 0.0842104i
\(352\) 1.82843 + 1.82843i 0.0974555 + 0.0974555i
\(353\) 9.22691 0.491099 0.245550 0.969384i \(-0.421032\pi\)
0.245550 + 0.969384i \(0.421032\pi\)
\(354\) 13.2133 + 13.2133i 0.702278 + 0.702278i
\(355\) 0 0
\(356\) 15.9787 0.846872
\(357\) 50.0230 + 37.1179i 2.64750 + 1.96449i
\(358\) 0.170794 0.00902675
\(359\) 23.1576i 1.22221i 0.791550 + 0.611105i \(0.209275\pi\)
−0.791550 + 0.611105i \(0.790725\pi\)
\(360\) 0 0
\(361\) 14.7548 0.776569
\(362\) −3.32882 3.32882i −0.174959 0.174959i
\(363\) −9.96954 + 9.96954i −0.523265 + 0.523265i
\(364\) −0.476478 + 0.476478i −0.0249743 + 0.0249743i
\(365\) 0 0
\(366\) 12.2025i 0.637836i
\(367\) 5.65951 5.65951i 0.295424 0.295424i −0.543794 0.839219i \(-0.683013\pi\)
0.839219 + 0.543794i \(0.183013\pi\)
\(368\) 3.41421 3.41421i 0.177978 0.177978i
\(369\) −42.5378 42.5378i −2.21443 2.21443i
\(370\) 0 0
\(371\) −21.8418 21.8418i −1.13397 1.13397i
\(372\) 12.8764i 0.667608i
\(373\) 16.1245 0.834896 0.417448 0.908701i \(-0.362925\pi\)
0.417448 + 0.908701i \(0.362925\pi\)
\(374\) 1.56188 + 10.5464i 0.0807627 + 0.545344i
\(375\) 0 0
\(376\) 8.47648i 0.437141i
\(377\) 0.306592 + 0.306592i 0.0157903 + 0.0157903i
\(378\) 70.7433 3.63864
\(379\) 23.6577 + 23.6577i 1.21522 + 1.21522i 0.969288 + 0.245929i \(0.0790930\pi\)
0.245929 + 0.969288i \(0.420907\pi\)
\(380\) 0 0
\(381\) 25.8480 25.8480i 1.32423 1.32423i
\(382\) 4.79461i 0.245314i
\(383\) 17.5273i 0.895602i −0.894133 0.447801i \(-0.852207\pi\)
0.894133 0.447801i \(-0.147793\pi\)
\(384\) −2.31113 + 2.31113i −0.117939 + 0.117939i
\(385\) 0 0
\(386\) 10.6819 + 10.6819i 0.543693 + 0.543693i
\(387\) 4.78061 0.243012
\(388\) 12.5814 + 12.5814i 0.638726 + 0.638726i
\(389\) 5.39395i 0.273484i 0.990607 + 0.136742i \(0.0436631\pi\)
−0.990607 + 0.136742i \(0.956337\pi\)
\(390\) 0 0
\(391\) 19.6933 2.91648i 0.995934 0.147493i
\(392\) 14.3653 0.725557
\(393\) 48.8640i 2.46486i
\(394\) 4.85610 + 4.85610i 0.244647 + 0.244647i
\(395\) 0 0
\(396\) 14.0472 + 14.0472i 0.705896 + 0.705896i
\(397\) −22.1572 + 22.1572i −1.11204 + 1.11204i −0.119166 + 0.992874i \(0.538022\pi\)
−0.992874 + 0.119166i \(0.961978\pi\)
\(398\) −2.12810 + 2.12810i −0.106672 + 0.106672i
\(399\) 31.1274i 1.55832i
\(400\) 0 0
\(401\) −27.5332 + 27.5332i −1.37494 + 1.37494i −0.521994 + 0.852949i \(0.674812\pi\)
−0.852949 + 0.521994i \(0.825188\pi\)
\(402\) −3.66930 + 3.66930i −0.183008 + 0.183008i
\(403\) −0.406109 0.406109i −0.0202297 0.0202297i
\(404\) −7.65685 −0.380943
\(405\) 0 0
\(406\) 13.7476i 0.682280i
\(407\) −8.92274 −0.442284
\(408\) −13.3307 + 1.97421i −0.659968 + 0.0977379i
\(409\) 16.6326 0.822430 0.411215 0.911538i \(-0.365105\pi\)
0.411215 + 0.911538i \(0.365105\pi\)
\(410\) 0 0
\(411\) 32.7218 + 32.7218i 1.61405 + 1.61405i
\(412\) 8.07295 0.397726
\(413\) 18.6864 + 18.6864i 0.919498 + 0.919498i
\(414\) 26.2302 26.2302i 1.28914 1.28914i
\(415\) 0 0
\(416\) 0.145782i 0.00714755i
\(417\) 69.6711i 3.41181i
\(418\) 3.76726 3.76726i 0.184263 0.184263i
\(419\) 20.3049 20.3049i 0.991960 0.991960i −0.00800839 0.999968i \(-0.502549\pi\)
0.999968 + 0.00800839i \(0.00254918\pi\)
\(420\) 0 0
\(421\) 28.5974 1.39375 0.696875 0.717193i \(-0.254573\pi\)
0.696875 + 0.717193i \(0.254573\pi\)
\(422\) 1.47648 + 1.47648i 0.0718738 + 0.0718738i
\(423\) 65.1218i 3.16633i
\(424\) 6.68265 0.324538
\(425\) 0 0
\(426\) 8.48893 0.411290
\(427\) 17.2570i 0.835123i
\(428\) 1.68265 + 1.68265i 0.0813337 + 0.0813337i
\(429\) −1.23207 −0.0594850
\(430\) 0 0
\(431\) 1.39800 1.39800i 0.0673395 0.0673395i −0.672635 0.739974i \(-0.734838\pi\)
0.739974 + 0.672635i \(0.234838\pi\)
\(432\) −10.8222 + 10.8222i −0.520683 + 0.520683i
\(433\) 35.6444i 1.71296i 0.516180 + 0.856480i \(0.327354\pi\)
−0.516180 + 0.856480i \(0.672646\pi\)
\(434\) 18.2099i 0.874104i
\(435\) 0 0
\(436\) 2.10308 2.10308i 0.100719 0.100719i
\(437\) −7.03459 7.03459i −0.336510 0.336510i
\(438\) 26.9117 1.28589
\(439\) −10.9165 10.9165i −0.521015 0.521015i 0.396863 0.917878i \(-0.370099\pi\)
−0.917878 + 0.396863i \(0.870099\pi\)
\(440\) 0 0
\(441\) 110.363 5.25540
\(442\) 0.358173 0.482703i 0.0170366 0.0229598i
\(443\) 8.63471 0.410247 0.205124 0.978736i \(-0.434240\pi\)
0.205124 + 0.978736i \(0.434240\pi\)
\(444\) 11.2783i 0.535246i
\(445\) 0 0
\(446\) −22.6186 −1.07102
\(447\) −23.7564 23.7564i −1.12364 1.12364i
\(448\) −3.26843 + 3.26843i −0.154419 + 0.154419i
\(449\) 5.98677 5.98677i 0.282533 0.282533i −0.551585 0.834119i \(-0.685977\pi\)
0.834119 + 0.551585i \(0.185977\pi\)
\(450\) 0 0
\(451\) 20.2475i 0.953418i
\(452\) −7.19994 + 7.19994i −0.338657 + 0.338657i
\(453\) 15.1075 15.1075i 0.709814 0.709814i
\(454\) −8.29868 8.29868i −0.389476 0.389476i
\(455\) 0 0
\(456\) 4.76182 + 4.76182i 0.222993 + 0.222993i
\(457\) 33.1305i 1.54978i −0.632097 0.774889i \(-0.717806\pi\)
0.632097 0.774889i \(-0.282194\pi\)
\(458\) −25.8897 −1.20975
\(459\) −62.4229 + 9.24452i −2.91365 + 0.431497i
\(460\) 0 0
\(461\) 12.8035i 0.596320i 0.954516 + 0.298160i \(0.0963729\pi\)
−0.954516 + 0.298160i \(0.903627\pi\)
\(462\) 27.6230 + 27.6230i 1.28514 + 1.28514i
\(463\) −25.9877 −1.20775 −0.603875 0.797079i \(-0.706377\pi\)
−0.603875 + 0.797079i \(0.706377\pi\)
\(464\) 2.10308 + 2.10308i 0.0976332 + 0.0976332i
\(465\) 0 0
\(466\) −9.65141 + 9.65141i −0.447093 + 0.447093i
\(467\) 11.1805i 0.517371i 0.965962 + 0.258686i \(0.0832894\pi\)
−0.965962 + 0.258686i \(0.916711\pi\)
\(468\) 1.11999i 0.0517716i
\(469\) −5.18918 + 5.18918i −0.239614 + 0.239614i
\(470\) 0 0
\(471\) −28.7359 28.7359i −1.32408 1.32408i
\(472\) −5.71724 −0.263157
\(473\) 1.13776 + 1.13776i 0.0523142 + 0.0523142i
\(474\) 15.2232i 0.699223i
\(475\) 0 0
\(476\) −18.8525 + 2.79195i −0.864101 + 0.127969i
\(477\) 51.3404 2.35072
\(478\) 25.4736i 1.16514i
\(479\) −7.57878 7.57878i −0.346283 0.346283i 0.512440 0.858723i \(-0.328742\pi\)
−0.858723 + 0.512440i \(0.828742\pi\)
\(480\) 0 0
\(481\) 0.355709 + 0.355709i 0.0162189 + 0.0162189i
\(482\) 5.65763 5.65763i 0.257698 0.257698i
\(483\) 51.5804 51.5804i 2.34699 2.34699i
\(484\) 4.31371i 0.196078i
\(485\) 0 0
\(486\) −29.8764 + 29.8764i −1.35522 + 1.35522i
\(487\) 19.9761 19.9761i 0.905203 0.905203i −0.0906773 0.995880i \(-0.528903\pi\)
0.995880 + 0.0906773i \(0.0289032\pi\)
\(488\) 2.63995 + 2.63995i 0.119505 + 0.119505i
\(489\) 2.60073 0.117609
\(490\) 0 0
\(491\) 9.08253i 0.409889i 0.978774 + 0.204944i \(0.0657014\pi\)
−0.978774 + 0.204944i \(0.934299\pi\)
\(492\) 25.5928 1.15381
\(493\) 1.79649 + 12.1307i 0.0809099 + 0.546338i
\(494\) −0.300367 −0.0135141
\(495\) 0 0
\(496\) −2.78573 2.78573i −0.125083 0.125083i
\(497\) 12.0052 0.538505
\(498\) −20.6010 20.6010i −0.923153 0.923153i
\(499\) −2.62304 + 2.62304i −0.117423 + 0.117423i −0.763377 0.645953i \(-0.776460\pi\)
0.645953 + 0.763377i \(0.276460\pi\)
\(500\) 0 0
\(501\) 15.5430i 0.694408i
\(502\) 8.60981i 0.384275i
\(503\) −2.84354 + 2.84354i −0.126787 + 0.126787i −0.767653 0.640866i \(-0.778575\pi\)
0.640866 + 0.767653i \(0.278575\pi\)
\(504\) −25.1102 + 25.1102i −1.11850 + 1.11850i
\(505\) 0 0
\(506\) 12.4853 0.555038
\(507\) −29.9956 29.9956i −1.33215 1.33215i
\(508\) 11.1841i 0.496216i
\(509\) 21.0221 0.931790 0.465895 0.884840i \(-0.345732\pi\)
0.465895 + 0.884840i \(0.345732\pi\)
\(510\) 0 0
\(511\) 38.0589 1.68363
\(512\) 1.00000i 0.0441942i
\(513\) 22.2979 + 22.2979i 0.984476 + 0.984476i
\(514\) 13.7976 0.608586
\(515\) 0 0
\(516\) −1.43812 + 1.43812i −0.0633099 + 0.0633099i
\(517\) 15.4986 15.4986i 0.681629 0.681629i
\(518\) 15.9500i 0.700802i
\(519\) 41.6090i 1.82643i
\(520\) 0 0
\(521\) −3.14578 + 3.14578i −0.137819 + 0.137819i −0.772651 0.634831i \(-0.781070\pi\)
0.634831 + 0.772651i \(0.281070\pi\)
\(522\) 16.1572 + 16.1572i 0.707183 + 0.707183i
\(523\) 2.55823 0.111864 0.0559318 0.998435i \(-0.482187\pi\)
0.0559318 + 0.998435i \(0.482187\pi\)
\(524\) −10.5715 10.5715i −0.461816 0.461816i
\(525\) 0 0
\(526\) 22.3271 0.973506
\(527\) −2.37962 16.0682i −0.103658 0.699942i
\(528\) −8.45147 −0.367803
\(529\) 0.313708i 0.0136395i
\(530\) 0 0
\(531\) −43.9235 −1.90612
\(532\) 6.73423 + 6.73423i 0.291966 + 0.291966i
\(533\) −0.807175 + 0.807175i −0.0349626 + 0.0349626i
\(534\) −36.9290 + 36.9290i −1.59807 + 1.59807i
\(535\) 0 0
\(536\) 1.58767i 0.0685767i
\(537\) −0.394728 + 0.394728i −0.0170338 + 0.0170338i
\(538\) 11.2747 11.2747i 0.486085 0.486085i
\(539\) 26.2659 + 26.2659i 1.13135 + 1.13135i
\(540\) 0 0
\(541\) −20.3318 20.3318i −0.874132 0.874132i 0.118787 0.992920i \(-0.462099\pi\)
−0.992920 + 0.118787i \(0.962099\pi\)
\(542\) 30.8765i 1.32626i
\(543\) 15.3867 0.660305
\(544\) 2.45691 3.31113i 0.105339 0.141964i
\(545\) 0 0
\(546\) 2.20241i 0.0942543i
\(547\) 7.93417 + 7.93417i 0.339241 + 0.339241i 0.856081 0.516841i \(-0.172892\pi\)
−0.516841 + 0.856081i \(0.672892\pi\)
\(548\) −14.1583 −0.604815
\(549\) 20.2818 + 20.2818i 0.865605 + 0.865605i
\(550\) 0 0
\(551\) 4.33316 4.33316i 0.184599 0.184599i
\(552\) 15.7814i 0.671700i
\(553\) 21.5288i 0.915497i
\(554\) 19.7325 19.7325i 0.838352 0.838352i
\(555\) 0 0
\(556\) 15.0729 + 15.0729i 0.639235 + 0.639235i
\(557\) −37.4862 −1.58834 −0.794170 0.607696i \(-0.792094\pi\)
−0.794170 + 0.607696i \(0.792094\pi\)
\(558\) −21.4018 21.4018i −0.906009 0.906009i
\(559\) 0.0907143i 0.00383681i
\(560\) 0 0
\(561\) −27.9839 20.7645i −1.18148 0.876678i
\(562\) −10.2879 −0.433970
\(563\) 21.9751i 0.926140i 0.886322 + 0.463070i \(0.153252\pi\)
−0.886322 + 0.463070i \(0.846748\pi\)
\(564\) 19.5902 + 19.5902i 0.824898 + 0.824898i
\(565\) 0 0
\(566\) −8.51730 8.51730i −0.358009 0.358009i
\(567\) −88.1663 + 88.1663i −3.70264 + 3.70264i
\(568\) −1.83653 + 1.83653i −0.0770592 + 0.0770592i
\(569\) 15.3425i 0.643190i 0.946877 + 0.321595i \(0.104219\pi\)
−0.946877 + 0.321595i \(0.895781\pi\)
\(570\) 0 0
\(571\) 1.57068 1.57068i 0.0657308 0.0657308i −0.673477 0.739208i \(-0.735200\pi\)
0.739208 + 0.673477i \(0.235200\pi\)
\(572\) 0.266552 0.266552i 0.0111451 0.0111451i
\(573\) 11.0810 + 11.0810i 0.462914 + 0.462914i
\(574\) 36.1937 1.51070
\(575\) 0 0
\(576\) 7.68265i 0.320110i
\(577\) −1.36685 −0.0569026 −0.0284513 0.999595i \(-0.509058\pi\)
−0.0284513 + 0.999595i \(0.509058\pi\)
\(578\) 16.2703 4.92717i 0.676756 0.204943i
\(579\) −49.3744 −2.05193
\(580\) 0 0
\(581\) −29.1342 29.1342i −1.20869 1.20869i
\(582\) −58.1547 −2.41059
\(583\) 12.2187 + 12.2187i 0.506048 + 0.506048i
\(584\) −5.82220 + 5.82220i −0.240924 + 0.240924i
\(585\) 0 0
\(586\) 30.6024i 1.26417i
\(587\) 36.4050i 1.50260i 0.659963 + 0.751298i \(0.270572\pi\)
−0.659963 + 0.751298i \(0.729428\pi\)
\(588\) −33.2001 + 33.2001i −1.36915 + 1.36915i
\(589\) −5.73967 + 5.73967i −0.236499 + 0.236499i
\(590\) 0 0
\(591\) −22.4461 −0.923311
\(592\) 2.44000 + 2.44000i 0.100284 + 0.100284i
\(593\) 20.7822i 0.853421i −0.904388 0.426711i \(-0.859672\pi\)
0.904388 0.426711i \(-0.140328\pi\)
\(594\) −39.5752 −1.62379
\(595\) 0 0
\(596\) 10.2791 0.421049
\(597\) 9.83661i 0.402586i
\(598\) −0.497731 0.497731i −0.0203537 0.0203537i
\(599\) 11.2961 0.461546 0.230773 0.973008i \(-0.425874\pi\)
0.230773 + 0.973008i \(0.425874\pi\)
\(600\) 0 0
\(601\) −30.6356 + 30.6356i −1.24965 + 1.24965i −0.293779 + 0.955873i \(0.594913\pi\)
−0.955873 + 0.293779i \(0.905087\pi\)
\(602\) −2.03382 + 2.03382i −0.0828921 + 0.0828921i
\(603\) 12.1975i 0.496720i
\(604\) 6.53686i 0.265981i
\(605\) 0 0
\(606\) 17.6960 17.6960i 0.718850 0.718850i
\(607\) 28.6035 + 28.6035i 1.16098 + 1.16098i 0.984261 + 0.176719i \(0.0565484\pi\)
0.176719 + 0.984261i \(0.443452\pi\)
\(608\) −2.06038 −0.0835596
\(609\) 31.7724 + 31.7724i 1.28748 + 1.28748i
\(610\) 0 0
\(611\) −1.23572 −0.0499918
\(612\) 18.8756 25.4382i 0.763000 1.02828i
\(613\) 6.73799 0.272145 0.136072 0.990699i \(-0.456552\pi\)
0.136072 + 0.990699i \(0.456552\pi\)
\(614\) 13.6268i 0.549933i
\(615\) 0 0
\(616\) −11.9522 −0.481567
\(617\) −17.4915 17.4915i −0.704182 0.704182i 0.261124 0.965305i \(-0.415907\pi\)
−0.965305 + 0.261124i \(0.915907\pi\)
\(618\) −18.6576 + 18.6576i −0.750520 + 0.750520i
\(619\) 15.9442 15.9442i 0.640850 0.640850i −0.309915 0.950764i \(-0.600301\pi\)
0.950764 + 0.309915i \(0.100301\pi\)
\(620\) 0 0
\(621\) 73.8986i 2.96545i
\(622\) 8.72792 8.72792i 0.349958 0.349958i
\(623\) −52.2254 + 52.2254i −2.09237 + 2.09237i
\(624\) 0.336921 + 0.336921i 0.0134876 + 0.0134876i
\(625\) 0 0
\(626\) −8.73345 8.73345i −0.349059 0.349059i
\(627\) 17.4133i 0.695419i
\(628\) 12.4337 0.496159
\(629\) 2.08430 + 14.0740i 0.0831063 + 0.561169i
\(630\) 0 0
\(631\) 5.83297i 0.232207i 0.993237 + 0.116103i \(0.0370404\pi\)
−0.993237 + 0.116103i \(0.962960\pi\)
\(632\) 3.29344 + 3.29344i 0.131006 + 0.131006i
\(633\) −6.82467 −0.271256
\(634\) 11.3288 + 11.3288i 0.449925 + 0.449925i
\(635\) 0 0
\(636\) −15.4445 + 15.4445i −0.612413 + 0.612413i
\(637\) 2.09420i 0.0829752i
\(638\) 7.69067i 0.304477i
\(639\) −14.1094 + 14.1094i −0.558160 + 0.558160i
\(640\) 0 0
\(641\) 8.08629 + 8.08629i 0.319389 + 0.319389i 0.848532 0.529143i \(-0.177487\pi\)
−0.529143 + 0.848532i \(0.677487\pi\)
\(642\) −7.77762 −0.306958
\(643\) 2.42192 + 2.42192i 0.0955110 + 0.0955110i 0.753248 0.657737i \(-0.228486\pi\)
−0.657737 + 0.753248i \(0.728486\pi\)
\(644\) 22.3182i 0.879462i
\(645\) 0 0
\(646\) −6.82220 5.06218i −0.268416 0.199169i
\(647\) −32.9671 −1.29607 −0.648035 0.761611i \(-0.724409\pi\)
−0.648035 + 0.761611i \(0.724409\pi\)
\(648\) 26.9751i 1.05968i
\(649\) −10.4536 10.4536i −0.410338 0.410338i
\(650\) 0 0
\(651\) −42.0855 42.0855i −1.64946 1.64946i
\(652\) −0.562654 + 0.562654i −0.0220352 + 0.0220352i
\(653\) −2.47382 + 2.47382i −0.0968080 + 0.0968080i −0.753852 0.657044i \(-0.771807\pi\)
0.657044 + 0.753852i \(0.271807\pi\)
\(654\) 9.72100i 0.380121i
\(655\) 0 0
\(656\) −5.53686 + 5.53686i −0.216178 + 0.216178i
\(657\) −44.7299 + 44.7299i −1.74508 + 1.74508i
\(658\) 27.7048 + 27.7048i 1.08005 + 1.08005i
\(659\) 38.0355 1.48165 0.740826 0.671697i \(-0.234434\pi\)
0.740826 + 0.671697i \(0.234434\pi\)
\(660\) 0 0
\(661\) 16.7077i 0.649853i 0.945739 + 0.324926i \(0.105339\pi\)
−0.945739 + 0.324926i \(0.894661\pi\)
\(662\) 10.5494 0.410015
\(663\) 0.287804 + 1.94337i 0.0111774 + 0.0754744i
\(664\) 8.91382 0.345923
\(665\) 0 0
\(666\) 18.7457 + 18.7457i 0.726381 + 0.726381i
\(667\) 14.3608 0.556051
\(668\) −3.36263 3.36263i −0.130104 0.130104i
\(669\) 52.2746 52.2746i 2.02105 2.02105i
\(670\) 0 0
\(671\) 9.65390i 0.372685i
\(672\) 15.1075i 0.582786i
\(673\) −21.0829 + 21.0829i −0.812687 + 0.812687i −0.985036 0.172349i \(-0.944864\pi\)
0.172349 + 0.985036i \(0.444864\pi\)
\(674\) −8.95840 + 8.95840i −0.345065 + 0.345065i
\(675\) 0 0
\(676\) 12.9787 0.499183
\(677\) −7.32517 7.32517i −0.281529 0.281529i 0.552189 0.833719i \(-0.313792\pi\)
−0.833719 + 0.552189i \(0.813792\pi\)
\(678\) 33.2800i 1.27811i
\(679\) −82.2432 −3.15620
\(680\) 0 0
\(681\) 38.3587 1.46991
\(682\) 10.1870i 0.390081i
\(683\) 20.1403 + 20.1403i 0.770649 + 0.770649i 0.978220 0.207571i \(-0.0665559\pi\)
−0.207571 + 0.978220i \(0.566556\pi\)
\(684\) −15.8292 −0.605245
\(685\) 0 0
\(686\) −24.0729 + 24.0729i −0.919109 + 0.919109i
\(687\) 59.8345 59.8345i 2.28283 2.28283i
\(688\) 0.622260i 0.0237235i
\(689\) 0.974209i 0.0371144i
\(690\) 0 0
\(691\) 34.6090 34.6090i 1.31659 1.31659i 0.400132 0.916457i \(-0.368964\pi\)
0.916457 0.400132i \(-0.131036\pi\)
\(692\) 9.00188 + 9.00188i 0.342200 + 0.342200i
\(693\) −91.8243 −3.48812
\(694\) 2.59024 + 2.59024i 0.0983243 + 0.0983243i
\(695\) 0 0
\(696\) −9.72100 −0.368474
\(697\) −31.9369 + 4.72969i −1.20969 + 0.179150i
\(698\) 28.5120 1.07919
\(699\) 44.6113i 1.68736i
\(700\) 0 0
\(701\) −8.53155 −0.322232 −0.161116 0.986935i \(-0.551509\pi\)
−0.161116 + 0.986935i \(0.551509\pi\)
\(702\) 1.57768 + 1.57768i 0.0595458 + 0.0595458i
\(703\) 5.02735 5.02735i 0.189610 0.189610i
\(704\) 1.82843 1.82843i 0.0689114 0.0689114i
\(705\) 0 0
\(706\) 9.22691i 0.347260i
\(707\) 25.0259 25.0259i 0.941196 0.941196i
\(708\) 13.2133 13.2133i 0.496586 0.496586i
\(709\) 9.95226 + 9.95226i 0.373765 + 0.373765i 0.868846 0.495082i \(-0.164862\pi\)
−0.495082 + 0.868846i \(0.664862\pi\)
\(710\) 0 0
\(711\) 25.3024 + 25.3024i 0.948913 + 0.948913i
\(712\) 15.9787i 0.598829i
\(713\) −19.0221 −0.712385
\(714\) 37.1179 50.0230i 1.38910 1.87207i
\(715\) 0 0
\(716\) 0.170794i 0.00638288i
\(717\) −58.8728 58.8728i −2.19865 2.19865i
\(718\) 23.1576 0.864233
\(719\) 2.74660 + 2.74660i 0.102431 + 0.102431i 0.756465 0.654034i \(-0.226925\pi\)
−0.654034 + 0.756465i \(0.726925\pi\)
\(720\) 0 0
\(721\) −26.3859 + 26.3859i −0.982661 + 0.982661i
\(722\) 14.7548i 0.549117i
\(723\) 26.1511i 0.972568i
\(724\) −3.32882 + 3.32882i −0.123714 + 0.123714i
\(725\) 0 0
\(726\) 9.96954 + 9.96954i 0.370004 + 0.370004i
\(727\) 43.7477 1.62251 0.811256 0.584691i \(-0.198784\pi\)
0.811256 + 0.584691i \(0.198784\pi\)
\(728\) 0.476478 + 0.476478i 0.0176595 + 0.0176595i
\(729\) 57.1710i 2.11745i
\(730\) 0 0
\(731\) 1.52884 2.06038i 0.0565461 0.0762061i
\(732\) −12.2025 −0.451018
\(733\) 27.1945i 1.00445i −0.864737 0.502226i \(-0.832515\pi\)
0.864737 0.502226i \(-0.167485\pi\)
\(734\) −5.65951 5.65951i −0.208896 0.208896i
\(735\) 0 0
\(736\) −3.41421 3.41421i −0.125850 0.125850i
\(737\) 2.90293 2.90293i 0.106931 0.106931i
\(738\) −42.5378 + 42.5378i −1.56584 + 1.56584i
\(739\) 14.5227i 0.534228i 0.963665 + 0.267114i \(0.0860700\pi\)
−0.963665 + 0.267114i \(0.913930\pi\)
\(740\) 0 0
\(741\) 0.694187 0.694187i 0.0255016 0.0255016i
\(742\) −21.8418 + 21.8418i −0.801837 + 0.801837i
\(743\) −36.1912 36.1912i −1.32773 1.32773i −0.907351 0.420375i \(-0.861899\pi\)
−0.420375 0.907351i \(-0.638101\pi\)
\(744\) 12.8764 0.472070
\(745\) 0 0
\(746\) 16.1245i 0.590361i
\(747\) 68.4817 2.50562
\(748\) 10.5464 1.56188i 0.385616 0.0571078i
\(749\) −10.9992 −0.401903
\(750\) 0 0
\(751\) 12.4234 + 12.4234i 0.453337 + 0.453337i 0.896461 0.443124i \(-0.146130\pi\)
−0.443124 + 0.896461i \(0.646130\pi\)
\(752\) −8.47648 −0.309105
\(753\) 19.8984 + 19.8984i 0.725138 + 0.725138i
\(754\) 0.306592 0.306592i 0.0111654 0.0111654i
\(755\) 0 0
\(756\) 70.7433i 2.57291i
\(757\) 37.5091i 1.36329i 0.731682 + 0.681646i \(0.238735\pi\)
−0.731682 + 0.681646i \(0.761265\pi\)
\(758\) 23.6577 23.6577i 0.859288 0.859288i
\(759\) −28.8551 + 28.8551i −1.04737 + 1.04737i
\(760\) 0 0
\(761\) −31.7851 −1.15221 −0.576105 0.817375i \(-0.695428\pi\)
−0.576105 + 0.817375i \(0.695428\pi\)
\(762\) −25.8480 25.8480i −0.936374 0.936374i
\(763\) 13.7476i 0.497695i
\(764\) −4.79461 −0.173463
\(765\) 0 0
\(766\) −17.5273 −0.633286
\(767\) 0.833470i 0.0300949i
\(768\) 2.31113 + 2.31113i 0.0833957 + 0.0833957i
\(769\) −31.9023 −1.15043 −0.575213 0.818004i \(-0.695081\pi\)
−0.575213 + 0.818004i \(0.695081\pi\)
\(770\) 0 0
\(771\) −31.8880 + 31.8880i −1.14842 + 1.14842i
\(772\) 10.6819 10.6819i 0.384449 0.384449i
\(773\) 27.0913i 0.974408i 0.873288 + 0.487204i \(0.161983\pi\)
−0.873288 + 0.487204i \(0.838017\pi\)
\(774\) 4.78061i 0.171835i
\(775\) 0 0
\(776\) 12.5814 12.5814i 0.451647 0.451647i
\(777\) 36.8625 + 36.8625i 1.32243 + 1.32243i
\(778\) 5.39395 0.193382
\(779\) 11.4081 + 11.4081i 0.408736 + 0.408736i
\(780\) 0 0
\(781\) −6.71593 −0.240315
\(782\) −2.91648 19.6933i −0.104293 0.704232i
\(783\) −45.5200 −1.62675
\(784\) 14.3653i 0.513046i
\(785\) 0 0
\(786\) 48.8640 1.74292
\(787\) 37.0771 + 37.0771i 1.32166 + 1.32166i 0.912436 + 0.409219i \(0.134199\pi\)
0.409219 + 0.912436i \(0.365801\pi\)
\(788\) 4.85610 4.85610i 0.172991 0.172991i
\(789\) −51.6007 + 51.6007i −1.83703 + 1.83703i
\(790\) 0 0
\(791\) 47.0650i 1.67344i
\(792\) 14.0472 14.0472i 0.499144 0.499144i
\(793\) 0.384857 0.384857i 0.0136667 0.0136667i
\(794\) 22.1572 + 22.1572i 0.786331 + 0.786331i
\(795\) 0 0
\(796\) 2.12810 + 2.12810i 0.0754284 + 0.0754284i
\(797\) 34.4375i 1.21984i 0.792464 + 0.609919i \(0.208798\pi\)
−0.792464 + 0.609919i \(0.791202\pi\)
\(798\) −31.1274 −1.10190
\(799\) −28.0667 20.8260i −0.992929 0.736770i
\(800\) 0 0
\(801\) 122.759i 4.33748i
\(802\) 27.5332 + 27.5332i 0.972232 + 0.972232i
\(803\) −21.2909 −0.751341
\(804\) 3.66930 + 3.66930i 0.129406 + 0.129406i
\(805\) 0 0
\(806\) −0.406109 + 0.406109i −0.0143046 + 0.0143046i
\(807\) 52.1144i 1.83451i
\(808\) 7.65685i 0.269367i
\(809\) −4.90215 + 4.90215i −0.172351 + 0.172351i −0.788011 0.615661i \(-0.788889\pi\)
0.615661 + 0.788011i \(0.288889\pi\)
\(810\) 0 0
\(811\) −16.9360 16.9360i −0.594702 0.594702i 0.344196 0.938898i \(-0.388152\pi\)
−0.938898 + 0.344196i \(0.888152\pi\)
\(812\) −13.7476 −0.482445
\(813\) −71.3596 71.3596i −2.50269 2.50269i
\(814\) 8.92274i 0.312742i
\(815\) 0 0
\(816\) 1.97421 + 13.3307i 0.0691111 + 0.466668i
\(817\) −1.28210 −0.0448549
\(818\) 16.6326i 0.581546i
\(819\) 3.66061 + 3.66061i 0.127912 + 0.127912i
\(820\) 0 0
\(821\) 14.1244 + 14.1244i 0.492947 + 0.492947i 0.909233 0.416287i \(-0.136669\pi\)
−0.416287 + 0.909233i \(0.636669\pi\)
\(822\) 32.7218 32.7218i 1.14130 1.14130i
\(823\) −4.17345 + 4.17345i −0.145477 + 0.145477i −0.776094 0.630617i \(-0.782802\pi\)
0.630617 + 0.776094i \(0.282802\pi\)
\(824\) 8.07295i 0.281234i
\(825\) 0 0
\(826\) 18.6864 18.6864i 0.650183 0.650183i
\(827\) 18.0258 18.0258i 0.626818 0.626818i −0.320448 0.947266i \(-0.603833\pi\)
0.947266 + 0.320448i \(0.103833\pi\)
\(828\) −26.2302 26.2302i −0.911562 0.911562i
\(829\) 18.4375 0.640359 0.320180 0.947357i \(-0.396257\pi\)
0.320180 + 0.947357i \(0.396257\pi\)
\(830\) 0 0
\(831\) 91.2086i 3.16399i
\(832\) −0.145782 −0.00505408
\(833\) 35.2943 47.5653i 1.22287 1.64804i
\(834\) −69.6711 −2.41251
\(835\) 0 0
\(836\) −3.76726 3.76726i −0.130294 0.130294i
\(837\) 60.2954 2.08412
\(838\) −20.3049 20.3049i −0.701421 0.701421i
\(839\) 8.28424 8.28424i 0.286004 0.286004i −0.549494 0.835498i \(-0.685179\pi\)
0.835498 + 0.549494i \(0.185179\pi\)
\(840\) 0 0
\(841\) 20.1541i 0.694968i
\(842\) 28.5974i 0.985530i
\(843\) 23.7767 23.7767i 0.818914 0.818914i
\(844\) 1.47648 1.47648i 0.0508225 0.0508225i
\(845\) 0 0
\(846\) −65.1218 −2.23893
\(847\) 14.0991 + 14.0991i 0.484449 + 0.484449i
\(848\) 6.68265i 0.229483i
\(849\) 39.3692 1.35115
\(850\) 0 0
\(851\) 16.6614 0.571145
\(852\) 8.48893i 0.290826i
\(853\) −9.64915 9.64915i −0.330381 0.330381i 0.522350 0.852731i \(-0.325055\pi\)
−0.852731 + 0.522350i \(0.825055\pi\)
\(854\) −17.2570 −0.590521
\(855\) 0 0
\(856\) 1.68265 1.68265i 0.0575116 0.0575116i
\(857\) −22.9313 + 22.9313i −0.783318 + 0.783318i −0.980389 0.197071i \(-0.936857\pi\)
0.197071 + 0.980389i \(0.436857\pi\)
\(858\) 1.23207i 0.0420622i
\(859\) 14.1902i 0.484164i −0.970256 0.242082i \(-0.922170\pi\)
0.970256 0.242082i \(-0.0778304\pi\)
\(860\) 0 0
\(861\) −83.6484 + 83.6484i −2.85073 + 2.85073i
\(862\) −1.39800 1.39800i −0.0476162 0.0476162i
\(863\) 52.0480 1.77174 0.885868 0.463937i \(-0.153564\pi\)
0.885868 + 0.463937i \(0.153564\pi\)
\(864\) 10.8222 + 10.8222i 0.368179 + 0.368179i
\(865\) 0 0
\(866\) 35.6444 1.21125
\(867\) −26.2155 + 48.9901i −0.890325 + 1.66379i
\(868\) 18.2099 0.618085
\(869\) 12.0436i 0.408553i
\(870\) 0 0
\(871\) −0.231453 −0.00784249
\(872\) −2.10308 2.10308i −0.0712194 0.0712194i
\(873\) 96.6588 96.6588i 3.27140 3.27140i
\(874\) −7.03459 + 7.03459i −0.237949 + 0.237949i
\(875\) 0 0
\(876\) 26.9117i 0.909263i
\(877\) −3.85156 + 3.85156i −0.130058 + 0.130058i −0.769139 0.639081i \(-0.779315\pi\)
0.639081 + 0.769139i \(0.279315\pi\)
\(878\) −10.9165 + 10.9165i −0.368413 + 0.368413i
\(879\) 70.7261 + 70.7261i 2.38553 + 2.38553i
\(880\) 0 0
\(881\) 12.6672 + 12.6672i 0.426769 + 0.426769i 0.887526 0.460757i \(-0.152422\pi\)
−0.460757 + 0.887526i \(0.652422\pi\)
\(882\) 110.363i 3.71613i
\(883\) −15.1362 −0.509374 −0.254687 0.967024i \(-0.581972\pi\)
−0.254687 + 0.967024i \(0.581972\pi\)
\(884\) −0.482703 0.358173i −0.0162351 0.0120467i
\(885\) 0 0
\(886\) 8.63471i 0.290089i
\(887\) 29.5122 + 29.5122i 0.990922 + 0.990922i 0.999959 0.00903736i \(-0.00287672\pi\)
−0.00903736 + 0.999959i \(0.502877\pi\)
\(888\) −11.2783 −0.378476
\(889\) −36.5546 36.5546i −1.22600 1.22600i
\(890\) 0 0
\(891\) 49.3220 49.3220i 1.65235 1.65235i
\(892\) 22.6186i 0.757327i
\(893\) 17.4648i 0.584438i
\(894\) −23.7564 + 23.7564i −0.794532 + 0.794532i
\(895\) 0 0
\(896\) 3.26843 + 3.26843i 0.109191 + 0.109191i
\(897\) 2.30064 0.0768162
\(898\) −5.98677 5.98677i −0.199781 0.199781i
\(899\) 11.7172i 0.390792i
\(900\) 0 0
\(901\) 16.4187 22.1271i 0.546985 0.737161i
\(902\) −20.2475 −0.674168
\(903\) 9.40082i 0.312840i
\(904\) 7.19994 + 7.19994i 0.239467 + 0.239467i
\(905\) 0 0
\(906\) −15.1075 15.1075i −0.501914 0.501914i
\(907\) 9.65865 9.65865i 0.320710 0.320710i −0.528329 0.849040i \(-0.677181\pi\)
0.849040 + 0.528329i \(0.177181\pi\)
\(908\) −8.29868 + 8.29868i −0.275401 + 0.275401i
\(909\) 58.8249i 1.95110i
\(910\) 0 0
\(911\) 0.866458 0.866458i 0.0287070 0.0287070i −0.692608 0.721315i \(-0.743538\pi\)
0.721315 + 0.692608i \(0.243538\pi\)
\(912\) 4.76182 4.76182i 0.157680 0.157680i
\(913\) 16.2983 + 16.2983i 0.539394 + 0.539394i
\(914\) −33.1305 −1.09586
\(915\) 0 0
\(916\) 25.8897i 0.855420i
\(917\) 69.1042 2.28202
\(918\) 9.24452 + 62.4229i 0.305115 + 2.06026i
\(919\) 21.7152 0.716317 0.358158 0.933661i \(-0.383405\pi\)
0.358158 + 0.933661i \(0.383405\pi\)
\(920\) 0 0
\(921\) 31.4933 + 31.4933i 1.03774 + 1.03774i
\(922\) 12.8035 0.421662
\(923\) 0.267733 + 0.267733i 0.00881255 + 0.00881255i
\(924\) 27.6230 27.6230i 0.908731 0.908731i
\(925\) 0 0
\(926\) 25.9877i 0.854008i
\(927\) 62.0216i 2.03706i
\(928\) 2.10308 2.10308i 0.0690371 0.0690371i
\(929\) −14.9022 + 14.9022i −0.488924 + 0.488924i −0.907967 0.419043i \(-0.862366\pi\)
0.419043 + 0.907967i \(0.362366\pi\)
\(930\) 0 0
\(931\) −29.5980 −0.970036
\(932\) 9.65141 + 9.65141i 0.316142 + 0.316142i
\(933\) 40.3427i 1.32076i
\(934\) 11.1805 0.365837
\(935\) 0 0
\(936\) −1.11999 −0.0366081
\(937\) 48.3234i 1.57866i −0.613971 0.789328i \(-0.710429\pi\)
0.613971 0.789328i \(-0.289571\pi\)
\(938\) 5.18918 + 5.18918i 0.169433 + 0.169433i
\(939\) 40.3683 1.31737
\(940\) 0 0
\(941\) 11.0045 11.0045i 0.358735 0.358735i −0.504611 0.863347i \(-0.668364\pi\)
0.863347 + 0.504611i \(0.168364\pi\)
\(942\) −28.7359 + 28.7359i −0.936266 + 0.936266i
\(943\) 37.8081i 1.23120i
\(944\) 5.71724i 0.186080i
\(945\) 0 0
\(946\) 1.13776 1.13776i 0.0369917 0.0369917i
\(947\) −21.4879 21.4879i −0.698262 0.698262i 0.265774 0.964035i \(-0.414373\pi\)
−0.964035 + 0.265774i \(0.914373\pi\)
\(948\) −15.2232 −0.494425
\(949\) 0.848772 + 0.848772i 0.0275523 + 0.0275523i
\(950\) 0 0
\(951\) −52.3647 −1.69804
\(952\) 2.79195 + 18.8525i 0.0904877 + 0.611011i
\(953\) 18.6150 0.602998 0.301499 0.953467i \(-0.402513\pi\)
0.301499 + 0.953467i \(0.402513\pi\)
\(954\) 51.3404i 1.66221i
\(955\) 0 0
\(956\) 25.4736 0.823875
\(957\) −17.7741 17.7741i −0.574556 0.574556i
\(958\) −7.57878 + 7.57878i −0.244859 + 0.244859i
\(959\) 46.2756 46.2756i 1.49432 1.49432i
\(960\) 0 0
\(961\) 15.4794i 0.499337i
\(962\) 0.355709 0.355709i 0.0114685 0.0114685i
\(963\) 12.9272 12.9272i 0.416572 0.416572i
\(964\) −5.65763 5.65763i −0.182220 0.182220i
\(965\) 0 0
\(966\) −51.5804 51.5804i −1.65957 1.65957i
\(967\) 24.1990i 0.778188i −0.921198 0.389094i \(-0.872788\pi\)
0.921198 0.389094i \(-0.127212\pi\)
\(968\) −4.31371 −0.138648
\(969\) 27.4664 4.06763i 0.882347 0.130671i
\(970\) 0 0
\(971\) 23.8896i 0.766653i 0.923613 + 0.383327i \(0.125222\pi\)
−0.923613 + 0.383327i \(0.874778\pi\)
\(972\) 29.8764 + 29.8764i 0.958285 + 0.958285i
\(973\) −98.5298 −3.15872
\(974\) −19.9761 19.9761i −0.640075 0.640075i
\(975\) 0 0
\(976\) 2.63995 2.63995i 0.0845026 0.0845026i
\(977\) 23.3337i 0.746510i −0.927729 0.373255i \(-0.878242\pi\)
0.927729 0.373255i \(-0.121758\pi\)
\(978\) 2.60073i 0.0831623i
\(979\) 29.2160 29.2160i 0.933747 0.933747i
\(980\) 0 0
\(981\) −16.1572 16.1572i −0.515861 0.515861i
\(982\) 9.08253 0.289835
\(983\) −37.4373 37.4373i −1.19406 1.19406i −0.975916 0.218147i \(-0.929999\pi\)
−0.218147 0.975916i \(-0.570001\pi\)
\(984\) 25.5928i 0.815869i
\(985\) 0 0
\(986\) 12.1307 1.79649i 0.386319 0.0572120i
\(987\) −128.059 −4.07615
\(988\) 0.300367i 0.00955595i
\(989\) −2.12453 2.12453i −0.0675561 0.0675561i
\(990\) 0 0
\(991\) 39.1164 + 39.1164i 1.24257 + 1.24257i 0.958929 + 0.283645i \(0.0915436\pi\)
0.283645 + 0.958929i \(0.408456\pi\)
\(992\) −2.78573 + 2.78573i −0.0884470 + 0.0884470i
\(993\) −24.3811 + 24.3811i −0.773711 + 0.773711i
\(994\) 12.0052i 0.380780i
\(995\) 0 0
\(996\) −20.6010 + 20.6010i −0.652768 + 0.652768i
\(997\) −36.7958 + 36.7958i −1.16534 + 1.16534i −0.182045 + 0.983290i \(0.558272\pi\)
−0.983290 + 0.182045i \(0.941728\pi\)
\(998\) 2.62304 + 2.62304i 0.0830308 + 0.0830308i
\(999\) −52.8124 −1.67091
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.h.n.251.4 8
5.2 odd 4 850.2.g.l.149.4 8
5.3 odd 4 850.2.g.i.149.1 8
5.4 even 2 170.2.h.b.81.1 yes 8
15.14 odd 2 1530.2.q.g.1441.1 8
17.4 even 4 inner 850.2.h.n.701.4 8
20.19 odd 2 1360.2.bt.b.81.4 8
85.4 even 4 170.2.h.b.21.1 8
85.9 even 8 2890.2.b.o.2311.1 8
85.19 even 8 2890.2.a.bd.1.1 4
85.38 odd 4 850.2.g.l.599.4 8
85.49 even 8 2890.2.a.be.1.4 4
85.59 even 8 2890.2.b.o.2311.8 8
85.72 odd 4 850.2.g.i.599.1 8
255.89 odd 4 1530.2.q.g.361.1 8
340.259 odd 4 1360.2.bt.b.1041.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.h.b.21.1 8 85.4 even 4
170.2.h.b.81.1 yes 8 5.4 even 2
850.2.g.i.149.1 8 5.3 odd 4
850.2.g.i.599.1 8 85.72 odd 4
850.2.g.l.149.4 8 5.2 odd 4
850.2.g.l.599.4 8 85.38 odd 4
850.2.h.n.251.4 8 1.1 even 1 trivial
850.2.h.n.701.4 8 17.4 even 4 inner
1360.2.bt.b.81.4 8 20.19 odd 2
1360.2.bt.b.1041.4 8 340.259 odd 4
1530.2.q.g.361.1 8 255.89 odd 4
1530.2.q.g.1441.1 8 15.14 odd 2
2890.2.a.bd.1.1 4 85.19 even 8
2890.2.a.be.1.4 4 85.49 even 8
2890.2.b.o.2311.1 8 85.9 even 8
2890.2.b.o.2311.8 8 85.59 even 8