Properties

Label 1360.2.bt.b.81.4
Level $1360$
Weight $2$
Character 1360.81
Analytic conductor $10.860$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1360,2,Mod(81,1360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1360, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1360.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bt (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.23045668864.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 26x^{6} + 237x^{4} + 892x^{2} + 1156 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 81.4
Root \(-2.26843i\) of defining polynomial
Character \(\chi\) \(=\) 1360.81
Dual form 1360.2.bt.b.1041.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.31113 + 2.31113i) q^{3} +(0.707107 + 0.707107i) q^{5} +(3.26843 - 3.26843i) q^{7} +7.68265i q^{9} +O(q^{10})\) \(q+(2.31113 + 2.31113i) q^{3} +(0.707107 + 0.707107i) q^{5} +(3.26843 - 3.26843i) q^{7} +7.68265i q^{9} +(1.82843 - 1.82843i) q^{11} -0.145782 q^{13} +3.26843i q^{15} +(-3.31113 - 2.45691i) q^{17} +2.06038i q^{19} +15.1075 q^{21} +(3.41421 - 3.41421i) q^{23} +1.00000i q^{25} +(-10.8222 + 10.8222i) q^{27} +(2.10308 + 2.10308i) q^{29} +(2.78573 + 2.78573i) q^{31} +8.45147 q^{33} +4.62226 q^{35} +(-2.44000 - 2.44000i) q^{37} +(-0.336921 - 0.336921i) q^{39} +(-5.53686 + 5.53686i) q^{41} -0.622260i q^{43} +(-5.43245 + 5.43245i) q^{45} -8.47648 q^{47} -14.3653i q^{49} +(-1.97421 - 13.3307i) q^{51} +6.68265i q^{53} +2.58579 q^{55} +(-4.76182 + 4.76182i) q^{57} -5.71724i q^{59} +(2.63995 - 2.63995i) q^{61} +(25.1102 + 25.1102i) q^{63} +(-0.103083 - 0.103083i) q^{65} -1.58767 q^{67} +15.7814 q^{69} +(-1.83653 - 1.83653i) q^{71} +(-5.82220 - 5.82220i) q^{73} +(-2.31113 + 2.31113i) q^{75} -11.9522i q^{77} +(-3.29344 + 3.29344i) q^{79} -26.9751 q^{81} -8.91382i q^{83} +(-0.604023 - 4.07862i) q^{85} +9.72100i q^{87} -15.9787 q^{89} +(-0.476478 + 0.476478i) q^{91} +12.8764i q^{93} +(-1.45691 + 1.45691i) q^{95} +(12.5814 + 12.5814i) q^{97} +(14.0472 + 14.0472i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{7} - 8 q^{11} - 12 q^{13} - 8 q^{17} + 16 q^{21} + 16 q^{23} - 12 q^{27} + 24 q^{29} - 4 q^{31} + 16 q^{33} - 20 q^{37} + 4 q^{39} - 8 q^{45} - 20 q^{47} - 4 q^{51} + 32 q^{55} + 40 q^{57} - 16 q^{61} + 64 q^{63} - 8 q^{65} + 16 q^{67} + 8 q^{69} - 4 q^{71} + 28 q^{73} - 8 q^{79} - 8 q^{81} + 8 q^{85} - 44 q^{89} + 44 q^{91} - 4 q^{95} + 20 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.31113 + 2.31113i 1.33433 + 1.33433i 0.901451 + 0.432880i \(0.142503\pi\)
0.432880 + 0.901451i \(0.357497\pi\)
\(4\) 0 0
\(5\) 0.707107 + 0.707107i 0.316228 + 0.316228i
\(6\) 0 0
\(7\) 3.26843 3.26843i 1.23535 1.23535i 0.273471 0.961880i \(-0.411828\pi\)
0.961880 0.273471i \(-0.0881717\pi\)
\(8\) 0 0
\(9\) 7.68265i 2.56088i
\(10\) 0 0
\(11\) 1.82843 1.82843i 0.551292 0.551292i −0.375522 0.926813i \(-0.622537\pi\)
0.926813 + 0.375522i \(0.122537\pi\)
\(12\) 0 0
\(13\) −0.145782 −0.0404326 −0.0202163 0.999796i \(-0.506435\pi\)
−0.0202163 + 0.999796i \(0.506435\pi\)
\(14\) 0 0
\(15\) 3.26843i 0.843905i
\(16\) 0 0
\(17\) −3.31113 2.45691i −0.803067 0.595889i
\(18\) 0 0
\(19\) 2.06038i 0.472685i 0.971670 + 0.236342i \(0.0759487\pi\)
−0.971670 + 0.236342i \(0.924051\pi\)
\(20\) 0 0
\(21\) 15.1075 3.29674
\(22\) 0 0
\(23\) 3.41421 3.41421i 0.711913 0.711913i −0.255022 0.966935i \(-0.582083\pi\)
0.966935 + 0.255022i \(0.0820828\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) −10.8222 + 10.8222i −2.08273 + 2.08273i
\(28\) 0 0
\(29\) 2.10308 + 2.10308i 0.390533 + 0.390533i 0.874877 0.484345i \(-0.160942\pi\)
−0.484345 + 0.874877i \(0.660942\pi\)
\(30\) 0 0
\(31\) 2.78573 + 2.78573i 0.500332 + 0.500332i 0.911541 0.411209i \(-0.134893\pi\)
−0.411209 + 0.911541i \(0.634893\pi\)
\(32\) 0 0
\(33\) 8.45147 1.47121
\(34\) 0 0
\(35\) 4.62226 0.781305
\(36\) 0 0
\(37\) −2.44000 2.44000i −0.401134 0.401134i 0.477498 0.878633i \(-0.341544\pi\)
−0.878633 + 0.477498i \(0.841544\pi\)
\(38\) 0 0
\(39\) −0.336921 0.336921i −0.0539505 0.0539505i
\(40\) 0 0
\(41\) −5.53686 + 5.53686i −0.864713 + 0.864713i −0.991881 0.127168i \(-0.959411\pi\)
0.127168 + 0.991881i \(0.459411\pi\)
\(42\) 0 0
\(43\) 0.622260i 0.0948938i −0.998874 0.0474469i \(-0.984892\pi\)
0.998874 0.0474469i \(-0.0151085\pi\)
\(44\) 0 0
\(45\) −5.43245 + 5.43245i −0.809822 + 0.809822i
\(46\) 0 0
\(47\) −8.47648 −1.23642 −0.618211 0.786012i \(-0.712142\pi\)
−0.618211 + 0.786012i \(0.712142\pi\)
\(48\) 0 0
\(49\) 14.3653i 2.05218i
\(50\) 0 0
\(51\) −1.97421 13.3307i −0.276445 1.86667i
\(52\) 0 0
\(53\) 6.68265i 0.917932i 0.888454 + 0.458966i \(0.151780\pi\)
−0.888454 + 0.458966i \(0.848220\pi\)
\(54\) 0 0
\(55\) 2.58579 0.348667
\(56\) 0 0
\(57\) −4.76182 + 4.76182i −0.630718 + 0.630718i
\(58\) 0 0
\(59\) 5.71724i 0.744321i −0.928168 0.372161i \(-0.878617\pi\)
0.928168 0.372161i \(-0.121383\pi\)
\(60\) 0 0
\(61\) 2.63995 2.63995i 0.338011 0.338011i −0.517608 0.855618i \(-0.673177\pi\)
0.855618 + 0.517608i \(0.173177\pi\)
\(62\) 0 0
\(63\) 25.1102 + 25.1102i 3.16359 + 3.16359i
\(64\) 0 0
\(65\) −0.103083 0.103083i −0.0127859 0.0127859i
\(66\) 0 0
\(67\) −1.58767 −0.193964 −0.0969822 0.995286i \(-0.530919\pi\)
−0.0969822 + 0.995286i \(0.530919\pi\)
\(68\) 0 0
\(69\) 15.7814 1.89986
\(70\) 0 0
\(71\) −1.83653 1.83653i −0.217956 0.217956i 0.589680 0.807637i \(-0.299254\pi\)
−0.807637 + 0.589680i \(0.799254\pi\)
\(72\) 0 0
\(73\) −5.82220 5.82220i −0.681437 0.681437i 0.278887 0.960324i \(-0.410035\pi\)
−0.960324 + 0.278887i \(0.910035\pi\)
\(74\) 0 0
\(75\) −2.31113 + 2.31113i −0.266866 + 0.266866i
\(76\) 0 0
\(77\) 11.9522i 1.36208i
\(78\) 0 0
\(79\) −3.29344 + 3.29344i −0.370541 + 0.370541i −0.867674 0.497133i \(-0.834386\pi\)
0.497133 + 0.867674i \(0.334386\pi\)
\(80\) 0 0
\(81\) −26.9751 −2.99723
\(82\) 0 0
\(83\) 8.91382i 0.978419i −0.872166 0.489210i \(-0.837285\pi\)
0.872166 0.489210i \(-0.162715\pi\)
\(84\) 0 0
\(85\) −0.604023 4.07862i −0.0655155 0.442389i
\(86\) 0 0
\(87\) 9.72100i 1.04220i
\(88\) 0 0
\(89\) −15.9787 −1.69374 −0.846872 0.531797i \(-0.821517\pi\)
−0.846872 + 0.531797i \(0.821517\pi\)
\(90\) 0 0
\(91\) −0.476478 + 0.476478i −0.0499485 + 0.0499485i
\(92\) 0 0
\(93\) 12.8764i 1.33522i
\(94\) 0 0
\(95\) −1.45691 + 1.45691i −0.149476 + 0.149476i
\(96\) 0 0
\(97\) 12.5814 + 12.5814i 1.27745 + 1.27745i 0.942089 + 0.335363i \(0.108859\pi\)
0.335363 + 0.942089i \(0.391141\pi\)
\(98\) 0 0
\(99\) 14.0472 + 14.0472i 1.41179 + 1.41179i
\(100\) 0 0
\(101\) 7.65685 0.761885 0.380943 0.924599i \(-0.375599\pi\)
0.380943 + 0.924599i \(0.375599\pi\)
\(102\) 0 0
\(103\) −8.07295 −0.795451 −0.397726 0.917504i \(-0.630200\pi\)
−0.397726 + 0.917504i \(0.630200\pi\)
\(104\) 0 0
\(105\) 10.6826 + 10.6826i 1.04252 + 1.04252i
\(106\) 0 0
\(107\) −1.68265 1.68265i −0.162667 0.162667i 0.621080 0.783747i \(-0.286694\pi\)
−0.783747 + 0.621080i \(0.786694\pi\)
\(108\) 0 0
\(109\) −2.10308 + 2.10308i −0.201439 + 0.201439i −0.800616 0.599177i \(-0.795494\pi\)
0.599177 + 0.800616i \(0.295494\pi\)
\(110\) 0 0
\(111\) 11.2783i 1.07049i
\(112\) 0 0
\(113\) −7.19994 + 7.19994i −0.677314 + 0.677314i −0.959391 0.282078i \(-0.908976\pi\)
0.282078 + 0.959391i \(0.408976\pi\)
\(114\) 0 0
\(115\) 4.82843 0.450253
\(116\) 0 0
\(117\) 1.11999i 0.103543i
\(118\) 0 0
\(119\) −18.8525 + 2.79195i −1.72820 + 0.255938i
\(120\) 0 0
\(121\) 4.31371i 0.392155i
\(122\) 0 0
\(123\) −25.5928 −2.30763
\(124\) 0 0
\(125\) −0.707107 + 0.707107i −0.0632456 + 0.0632456i
\(126\) 0 0
\(127\) 11.1841i 0.992432i −0.868199 0.496216i \(-0.834722\pi\)
0.868199 0.496216i \(-0.165278\pi\)
\(128\) 0 0
\(129\) 1.43812 1.43812i 0.126620 0.126620i
\(130\) 0 0
\(131\) −10.5715 10.5715i −0.923633 0.923633i 0.0736515 0.997284i \(-0.476535\pi\)
−0.997284 + 0.0736515i \(0.976535\pi\)
\(132\) 0 0
\(133\) 6.73423 + 6.73423i 0.583932 + 0.583932i
\(134\) 0 0
\(135\) −15.3049 −1.31724
\(136\) 0 0
\(137\) −14.1583 −1.20963 −0.604815 0.796366i \(-0.706753\pi\)
−0.604815 + 0.796366i \(0.706753\pi\)
\(138\) 0 0
\(139\) 15.0729 + 15.0729i 1.27847 + 1.27847i 0.941524 + 0.336947i \(0.109394\pi\)
0.336947 + 0.941524i \(0.390606\pi\)
\(140\) 0 0
\(141\) −19.5902 19.5902i −1.64980 1.64980i
\(142\) 0 0
\(143\) −0.266552 + 0.266552i −0.0222902 + 0.0222902i
\(144\) 0 0
\(145\) 2.97421i 0.246995i
\(146\) 0 0
\(147\) 33.2001 33.2001i 2.73829 2.73829i
\(148\) 0 0
\(149\) −10.2791 −0.842098 −0.421049 0.907038i \(-0.638338\pi\)
−0.421049 + 0.907038i \(0.638338\pi\)
\(150\) 0 0
\(151\) 6.53686i 0.531962i 0.963978 + 0.265981i \(0.0856959\pi\)
−0.963978 + 0.265981i \(0.914304\pi\)
\(152\) 0 0
\(153\) 18.8756 25.4382i 1.52600 2.05656i
\(154\) 0 0
\(155\) 3.93962i 0.316438i
\(156\) 0 0
\(157\) 12.4337 0.992317 0.496159 0.868232i \(-0.334743\pi\)
0.496159 + 0.868232i \(0.334743\pi\)
\(158\) 0 0
\(159\) −15.4445 + 15.4445i −1.22483 + 1.22483i
\(160\) 0 0
\(161\) 22.3182i 1.75892i
\(162\) 0 0
\(163\) 0.562654 0.562654i 0.0440705 0.0440705i −0.684728 0.728799i \(-0.740079\pi\)
0.728799 + 0.684728i \(0.240079\pi\)
\(164\) 0 0
\(165\) 5.97609 + 5.97609i 0.465238 + 0.465238i
\(166\) 0 0
\(167\) 3.36263 + 3.36263i 0.260208 + 0.260208i 0.825139 0.564930i \(-0.191097\pi\)
−0.564930 + 0.825139i \(0.691097\pi\)
\(168\) 0 0
\(169\) −12.9787 −0.998365
\(170\) 0 0
\(171\) −15.8292 −1.21049
\(172\) 0 0
\(173\) 9.00188 + 9.00188i 0.684400 + 0.684400i 0.960989 0.276588i \(-0.0892038\pi\)
−0.276588 + 0.960989i \(0.589204\pi\)
\(174\) 0 0
\(175\) 3.26843 + 3.26843i 0.247070 + 0.247070i
\(176\) 0 0
\(177\) 13.2133 13.2133i 0.993171 0.993171i
\(178\) 0 0
\(179\) 0.170794i 0.0127658i −0.999980 0.00638288i \(-0.997968\pi\)
0.999980 0.00638288i \(-0.00203175\pi\)
\(180\) 0 0
\(181\) 3.32882 3.32882i 0.247429 0.247429i −0.572486 0.819915i \(-0.694021\pi\)
0.819915 + 0.572486i \(0.194021\pi\)
\(182\) 0 0
\(183\) 12.2025 0.902036
\(184\) 0 0
\(185\) 3.45069i 0.253700i
\(186\) 0 0
\(187\) −10.5464 + 1.56188i −0.771232 + 0.114216i
\(188\) 0 0
\(189\) 70.7433i 5.14581i
\(190\) 0 0
\(191\) −4.79461 −0.346926 −0.173463 0.984840i \(-0.555496\pi\)
−0.173463 + 0.984840i \(0.555496\pi\)
\(192\) 0 0
\(193\) 10.6819 10.6819i 0.768898 0.768898i −0.209015 0.977912i \(-0.567026\pi\)
0.977912 + 0.209015i \(0.0670257\pi\)
\(194\) 0 0
\(195\) 0.476478i 0.0341213i
\(196\) 0 0
\(197\) 4.85610 4.85610i 0.345983 0.345983i −0.512628 0.858611i \(-0.671328\pi\)
0.858611 + 0.512628i \(0.171328\pi\)
\(198\) 0 0
\(199\) 2.12810 + 2.12810i 0.150857 + 0.150857i 0.778501 0.627644i \(-0.215981\pi\)
−0.627644 + 0.778501i \(0.715981\pi\)
\(200\) 0 0
\(201\) −3.66930 3.66930i −0.258813 0.258813i
\(202\) 0 0
\(203\) 13.7476 0.964890
\(204\) 0 0
\(205\) −7.83031 −0.546892
\(206\) 0 0
\(207\) 26.2302 + 26.2302i 1.82312 + 1.82312i
\(208\) 0 0
\(209\) 3.76726 + 3.76726i 0.260587 + 0.260587i
\(210\) 0 0
\(211\) 1.47648 1.47648i 0.101645 0.101645i −0.654456 0.756100i \(-0.727102\pi\)
0.756100 + 0.654456i \(0.227102\pi\)
\(212\) 0 0
\(213\) 8.48893i 0.581652i
\(214\) 0 0
\(215\) 0.440004 0.440004i 0.0300081 0.0300081i
\(216\) 0 0
\(217\) 18.2099 1.23617
\(218\) 0 0
\(219\) 26.9117i 1.81853i
\(220\) 0 0
\(221\) 0.482703 + 0.358173i 0.0324701 + 0.0240934i
\(222\) 0 0
\(223\) 22.6186i 1.51465i −0.653036 0.757327i \(-0.726505\pi\)
0.653036 0.757327i \(-0.273495\pi\)
\(224\) 0 0
\(225\) −7.68265 −0.512176
\(226\) 0 0
\(227\) 8.29868 8.29868i 0.550803 0.550803i −0.375870 0.926673i \(-0.622656\pi\)
0.926673 + 0.375870i \(0.122656\pi\)
\(228\) 0 0
\(229\) 25.8897i 1.71084i −0.517935 0.855420i \(-0.673299\pi\)
0.517935 0.855420i \(-0.326701\pi\)
\(230\) 0 0
\(231\) 27.6230 27.6230i 1.81746 1.81746i
\(232\) 0 0
\(233\) 9.65141 + 9.65141i 0.632285 + 0.632285i 0.948641 0.316356i \(-0.102459\pi\)
−0.316356 + 0.948641i \(0.602459\pi\)
\(234\) 0 0
\(235\) −5.99378 5.99378i −0.390991 0.390991i
\(236\) 0 0
\(237\) −15.2232 −0.988850
\(238\) 0 0
\(239\) 25.4736 1.64775 0.823875 0.566771i \(-0.191808\pi\)
0.823875 + 0.566771i \(0.191808\pi\)
\(240\) 0 0
\(241\) 5.65763 + 5.65763i 0.364440 + 0.364440i 0.865445 0.501005i \(-0.167036\pi\)
−0.501005 + 0.865445i \(0.667036\pi\)
\(242\) 0 0
\(243\) −29.8764 29.8764i −1.91657 1.91657i
\(244\) 0 0
\(245\) 10.1578 10.1578i 0.648958 0.648958i
\(246\) 0 0
\(247\) 0.300367i 0.0191119i
\(248\) 0 0
\(249\) 20.6010 20.6010i 1.30554 1.30554i
\(250\) 0 0
\(251\) −8.60981 −0.543446 −0.271723 0.962375i \(-0.587594\pi\)
−0.271723 + 0.962375i \(0.587594\pi\)
\(252\) 0 0
\(253\) 12.4853i 0.784943i
\(254\) 0 0
\(255\) 8.03025 10.8222i 0.502874 0.677713i
\(256\) 0 0
\(257\) 13.7976i 0.860670i −0.902669 0.430335i \(-0.858395\pi\)
0.902669 0.430335i \(-0.141605\pi\)
\(258\) 0 0
\(259\) −15.9500 −0.991083
\(260\) 0 0
\(261\) −16.1572 + 16.1572i −1.00011 + 1.00011i
\(262\) 0 0
\(263\) 22.3271i 1.37674i 0.725357 + 0.688372i \(0.241675\pi\)
−0.725357 + 0.688372i \(0.758325\pi\)
\(264\) 0 0
\(265\) −4.72534 + 4.72534i −0.290276 + 0.290276i
\(266\) 0 0
\(267\) −36.9290 36.9290i −2.26002 2.26002i
\(268\) 0 0
\(269\) 11.2747 + 11.2747i 0.687428 + 0.687428i 0.961663 0.274235i \(-0.0884246\pi\)
−0.274235 + 0.961663i \(0.588425\pi\)
\(270\) 0 0
\(271\) 30.8765 1.87561 0.937806 0.347159i \(-0.112854\pi\)
0.937806 + 0.347159i \(0.112854\pi\)
\(272\) 0 0
\(273\) −2.20241 −0.133296
\(274\) 0 0
\(275\) 1.82843 + 1.82843i 0.110258 + 0.110258i
\(276\) 0 0
\(277\) −19.7325 19.7325i −1.18561 1.18561i −0.978269 0.207340i \(-0.933519\pi\)
−0.207340 0.978269i \(-0.566481\pi\)
\(278\) 0 0
\(279\) −21.4018 + 21.4018i −1.28129 + 1.28129i
\(280\) 0 0
\(281\) 10.2879i 0.613726i −0.951754 0.306863i \(-0.900721\pi\)
0.951754 0.306863i \(-0.0992793\pi\)
\(282\) 0 0
\(283\) 8.51730 8.51730i 0.506301 0.506301i −0.407088 0.913389i \(-0.633456\pi\)
0.913389 + 0.407088i \(0.133456\pi\)
\(284\) 0 0
\(285\) −6.73423 −0.398901
\(286\) 0 0
\(287\) 36.1937i 2.13645i
\(288\) 0 0
\(289\) 4.92717 + 16.2703i 0.289833 + 0.957077i
\(290\) 0 0
\(291\) 58.1547i 3.40909i
\(292\) 0 0
\(293\) −30.6024 −1.78781 −0.893906 0.448255i \(-0.852046\pi\)
−0.893906 + 0.448255i \(0.852046\pi\)
\(294\) 0 0
\(295\) 4.04270 4.04270i 0.235375 0.235375i
\(296\) 0 0
\(297\) 39.5752i 2.29639i
\(298\) 0 0
\(299\) −0.497731 + 0.497731i −0.0287845 + 0.0287845i
\(300\) 0 0
\(301\) −2.03382 2.03382i −0.117227 0.117227i
\(302\) 0 0
\(303\) 17.6960 + 17.6960i 1.01661 + 1.01661i
\(304\) 0 0
\(305\) 3.73345 0.213777
\(306\) 0 0
\(307\) 13.6268 0.777722 0.388861 0.921296i \(-0.372869\pi\)
0.388861 + 0.921296i \(0.372869\pi\)
\(308\) 0 0
\(309\) −18.6576 18.6576i −1.06140 1.06140i
\(310\) 0 0
\(311\) −8.72792 8.72792i −0.494915 0.494915i 0.414936 0.909851i \(-0.363804\pi\)
−0.909851 + 0.414936i \(0.863804\pi\)
\(312\) 0 0
\(313\) −8.73345 + 8.73345i −0.493644 + 0.493644i −0.909452 0.415809i \(-0.863499\pi\)
0.415809 + 0.909452i \(0.363499\pi\)
\(314\) 0 0
\(315\) 35.5112i 2.00083i
\(316\) 0 0
\(317\) 11.3288 11.3288i 0.636290 0.636290i −0.313348 0.949638i \(-0.601451\pi\)
0.949638 + 0.313348i \(0.101451\pi\)
\(318\) 0 0
\(319\) 7.69067 0.430595
\(320\) 0 0
\(321\) 7.77762i 0.434105i
\(322\) 0 0
\(323\) 5.06218 6.82220i 0.281667 0.379597i
\(324\) 0 0
\(325\) 0.145782i 0.00808653i
\(326\) 0 0
\(327\) −9.72100 −0.537572
\(328\) 0 0
\(329\) −27.7048 + 27.7048i −1.52741 + 1.52741i
\(330\) 0 0
\(331\) 10.5494i 0.579849i −0.957050 0.289924i \(-0.906370\pi\)
0.957050 0.289924i \(-0.0936302\pi\)
\(332\) 0 0
\(333\) 18.7457 18.7457i 1.02726 1.02726i
\(334\) 0 0
\(335\) −1.12265 1.12265i −0.0613369 0.0613369i
\(336\) 0 0
\(337\) 8.95840 + 8.95840i 0.487995 + 0.487995i 0.907673 0.419678i \(-0.137857\pi\)
−0.419678 + 0.907673i \(0.637857\pi\)
\(338\) 0 0
\(339\) −33.2800 −1.80752
\(340\) 0 0
\(341\) 10.1870 0.551657
\(342\) 0 0
\(343\) −24.0729 24.0729i −1.29982 1.29982i
\(344\) 0 0
\(345\) 11.1591 + 11.1591i 0.600787 + 0.600787i
\(346\) 0 0
\(347\) −2.59024 + 2.59024i −0.139052 + 0.139052i −0.773206 0.634155i \(-0.781348\pi\)
0.634155 + 0.773206i \(0.281348\pi\)
\(348\) 0 0
\(349\) 28.5120i 1.52621i 0.646274 + 0.763105i \(0.276326\pi\)
−0.646274 + 0.763105i \(0.723674\pi\)
\(350\) 0 0
\(351\) 1.57768 1.57768i 0.0842104 0.0842104i
\(352\) 0 0
\(353\) −9.22691 −0.491099 −0.245550 0.969384i \(-0.578968\pi\)
−0.245550 + 0.969384i \(0.578968\pi\)
\(354\) 0 0
\(355\) 2.59725i 0.137848i
\(356\) 0 0
\(357\) −50.0230 37.1179i −2.64750 1.96449i
\(358\) 0 0
\(359\) 23.1576i 1.22221i −0.791550 0.611105i \(-0.790725\pi\)
0.791550 0.611105i \(-0.209275\pi\)
\(360\) 0 0
\(361\) 14.7548 0.776569
\(362\) 0 0
\(363\) −9.96954 + 9.96954i −0.523265 + 0.523265i
\(364\) 0 0
\(365\) 8.23384i 0.430979i
\(366\) 0 0
\(367\) 5.65951 5.65951i 0.295424 0.295424i −0.543794 0.839219i \(-0.683013\pi\)
0.839219 + 0.543794i \(0.183013\pi\)
\(368\) 0 0
\(369\) −42.5378 42.5378i −2.21443 2.21443i
\(370\) 0 0
\(371\) 21.8418 + 21.8418i 1.13397 + 1.13397i
\(372\) 0 0
\(373\) −16.1245 −0.834896 −0.417448 0.908701i \(-0.637075\pi\)
−0.417448 + 0.908701i \(0.637075\pi\)
\(374\) 0 0
\(375\) −3.26843 −0.168781
\(376\) 0 0
\(377\) −0.306592 0.306592i −0.0157903 0.0157903i
\(378\) 0 0
\(379\) −23.6577 23.6577i −1.21522 1.21522i −0.969288 0.245929i \(-0.920907\pi\)
−0.245929 0.969288i \(-0.579093\pi\)
\(380\) 0 0
\(381\) 25.8480 25.8480i 1.32423 1.32423i
\(382\) 0 0
\(383\) 17.5273i 0.895602i −0.894133 0.447801i \(-0.852207\pi\)
0.894133 0.447801i \(-0.147793\pi\)
\(384\) 0 0
\(385\) 8.45147 8.45147i 0.430727 0.430727i
\(386\) 0 0
\(387\) 4.78061 0.243012
\(388\) 0 0
\(389\) 5.39395i 0.273484i 0.990607 + 0.136742i \(0.0436631\pi\)
−0.990607 + 0.136742i \(0.956337\pi\)
\(390\) 0 0
\(391\) −19.6933 + 2.91648i −0.995934 + 0.147493i
\(392\) 0 0
\(393\) 48.8640i 2.46486i
\(394\) 0 0
\(395\) −4.65763 −0.234351
\(396\) 0 0
\(397\) 22.1572 22.1572i 1.11204 1.11204i 0.119166 0.992874i \(-0.461978\pi\)
0.992874 0.119166i \(-0.0380220\pi\)
\(398\) 0 0
\(399\) 31.1274i 1.55832i
\(400\) 0 0
\(401\) −27.5332 + 27.5332i −1.37494 + 1.37494i −0.521994 + 0.852949i \(0.674812\pi\)
−0.852949 + 0.521994i \(0.825188\pi\)
\(402\) 0 0
\(403\) −0.406109 0.406109i −0.0202297 0.0202297i
\(404\) 0 0
\(405\) −19.0743 19.0743i −0.947808 0.947808i
\(406\) 0 0
\(407\) −8.92274 −0.442284
\(408\) 0 0
\(409\) 16.6326 0.822430 0.411215 0.911538i \(-0.365105\pi\)
0.411215 + 0.911538i \(0.365105\pi\)
\(410\) 0 0
\(411\) −32.7218 32.7218i −1.61405 1.61405i
\(412\) 0 0
\(413\) −18.6864 18.6864i −0.919498 0.919498i
\(414\) 0 0
\(415\) 6.30303 6.30303i 0.309403 0.309403i
\(416\) 0 0
\(417\) 69.6711i 3.41181i
\(418\) 0 0
\(419\) −20.3049 + 20.3049i −0.991960 + 0.991960i −0.999968 0.00800839i \(-0.997451\pi\)
0.00800839 + 0.999968i \(0.497451\pi\)
\(420\) 0 0
\(421\) 28.5974 1.39375 0.696875 0.717193i \(-0.254573\pi\)
0.696875 + 0.717193i \(0.254573\pi\)
\(422\) 0 0
\(423\) 65.1218i 3.16633i
\(424\) 0 0
\(425\) 2.45691 3.31113i 0.119178 0.160613i
\(426\) 0 0
\(427\) 17.2570i 0.835123i
\(428\) 0 0
\(429\) −1.23207 −0.0594850
\(430\) 0 0
\(431\) −1.39800 + 1.39800i −0.0673395 + 0.0673395i −0.739974 0.672635i \(-0.765162\pi\)
0.672635 + 0.739974i \(0.265162\pi\)
\(432\) 0 0
\(433\) 35.6444i 1.71296i −0.516180 0.856480i \(-0.672646\pi\)
0.516180 0.856480i \(-0.327354\pi\)
\(434\) 0 0
\(435\) −6.87378 + 6.87378i −0.329573 + 0.329573i
\(436\) 0 0
\(437\) 7.03459 + 7.03459i 0.336510 + 0.336510i
\(438\) 0 0
\(439\) 10.9165 + 10.9165i 0.521015 + 0.521015i 0.917878 0.396863i \(-0.129901\pi\)
−0.396863 + 0.917878i \(0.629901\pi\)
\(440\) 0 0
\(441\) 110.363 5.25540
\(442\) 0 0
\(443\) 8.63471 0.410247 0.205124 0.978736i \(-0.434240\pi\)
0.205124 + 0.978736i \(0.434240\pi\)
\(444\) 0 0
\(445\) −11.2987 11.2987i −0.535609 0.535609i
\(446\) 0 0
\(447\) −23.7564 23.7564i −1.12364 1.12364i
\(448\) 0 0
\(449\) 5.98677 5.98677i 0.282533 0.282533i −0.551585 0.834119i \(-0.685977\pi\)
0.834119 + 0.551585i \(0.185977\pi\)
\(450\) 0 0
\(451\) 20.2475i 0.953418i
\(452\) 0 0
\(453\) −15.1075 + 15.1075i −0.709814 + 0.709814i
\(454\) 0 0
\(455\) −0.673842 −0.0315902
\(456\) 0 0
\(457\) 33.1305i 1.54978i 0.632097 + 0.774889i \(0.282194\pi\)
−0.632097 + 0.774889i \(0.717806\pi\)
\(458\) 0 0
\(459\) 62.4229 9.24452i 2.91365 0.431497i
\(460\) 0 0
\(461\) 12.8035i 0.596320i 0.954516 + 0.298160i \(0.0963729\pi\)
−0.954516 + 0.298160i \(0.903627\pi\)
\(462\) 0 0
\(463\) −25.9877 −1.20775 −0.603875 0.797079i \(-0.706377\pi\)
−0.603875 + 0.797079i \(0.706377\pi\)
\(464\) 0 0
\(465\) −9.10496 + 9.10496i −0.422233 + 0.422233i
\(466\) 0 0
\(467\) 11.1805i 0.517371i 0.965962 + 0.258686i \(0.0832894\pi\)
−0.965962 + 0.258686i \(0.916711\pi\)
\(468\) 0 0
\(469\) −5.18918 + 5.18918i −0.239614 + 0.239614i
\(470\) 0 0
\(471\) 28.7359 + 28.7359i 1.32408 + 1.32408i
\(472\) 0 0
\(473\) −1.13776 1.13776i −0.0523142 0.0523142i
\(474\) 0 0
\(475\) −2.06038 −0.0945369
\(476\) 0 0
\(477\) −51.3404 −2.35072
\(478\) 0 0
\(479\) 7.57878 + 7.57878i 0.346283 + 0.346283i 0.858723 0.512440i \(-0.171258\pi\)
−0.512440 + 0.858723i \(0.671258\pi\)
\(480\) 0 0
\(481\) 0.355709 + 0.355709i 0.0162189 + 0.0162189i
\(482\) 0 0
\(483\) 51.5804 51.5804i 2.34699 2.34699i
\(484\) 0 0
\(485\) 17.7928i 0.807931i
\(486\) 0 0
\(487\) 19.9761 19.9761i 0.905203 0.905203i −0.0906773 0.995880i \(-0.528903\pi\)
0.995880 + 0.0906773i \(0.0289032\pi\)
\(488\) 0 0
\(489\) 2.60073 0.117609
\(490\) 0 0
\(491\) 9.08253i 0.409889i −0.978774 0.204944i \(-0.934299\pi\)
0.978774 0.204944i \(-0.0657014\pi\)
\(492\) 0 0
\(493\) −1.79649 12.1307i −0.0809099 0.546338i
\(494\) 0 0
\(495\) 19.8657i 0.892896i
\(496\) 0 0
\(497\) −12.0052 −0.538505
\(498\) 0 0
\(499\) 2.62304 2.62304i 0.117423 0.117423i −0.645953 0.763377i \(-0.723540\pi\)
0.763377 + 0.645953i \(0.223540\pi\)
\(500\) 0 0
\(501\) 15.5430i 0.694408i
\(502\) 0 0
\(503\) −2.84354 + 2.84354i −0.126787 + 0.126787i −0.767653 0.640866i \(-0.778575\pi\)
0.640866 + 0.767653i \(0.278575\pi\)
\(504\) 0 0
\(505\) 5.41421 + 5.41421i 0.240929 + 0.240929i
\(506\) 0 0
\(507\) −29.9956 29.9956i −1.33215 1.33215i
\(508\) 0 0
\(509\) 21.0221 0.931790 0.465895 0.884840i \(-0.345732\pi\)
0.465895 + 0.884840i \(0.345732\pi\)
\(510\) 0 0
\(511\) −38.0589 −1.68363
\(512\) 0 0
\(513\) −22.2979 22.2979i −0.984476 0.984476i
\(514\) 0 0
\(515\) −5.70844 5.70844i −0.251544 0.251544i
\(516\) 0 0
\(517\) −15.4986 + 15.4986i −0.681629 + 0.681629i
\(518\) 0 0
\(519\) 41.6090i 1.82643i
\(520\) 0 0
\(521\) −3.14578 + 3.14578i −0.137819 + 0.137819i −0.772651 0.634831i \(-0.781070\pi\)
0.634831 + 0.772651i \(0.281070\pi\)
\(522\) 0 0
\(523\) 2.55823 0.111864 0.0559318 0.998435i \(-0.482187\pi\)
0.0559318 + 0.998435i \(0.482187\pi\)
\(524\) 0 0
\(525\) 15.1075i 0.659347i
\(526\) 0 0
\(527\) −2.37962 16.0682i −0.103658 0.699942i
\(528\) 0 0
\(529\) 0.313708i 0.0136395i
\(530\) 0 0
\(531\) 43.9235 1.90612
\(532\) 0 0
\(533\) 0.807175 0.807175i 0.0349626 0.0349626i
\(534\) 0 0
\(535\) 2.37962i 0.102880i
\(536\) 0 0
\(537\) 0.394728 0.394728i 0.0170338 0.0170338i
\(538\) 0 0
\(539\) −26.2659 26.2659i −1.13135 1.13135i
\(540\) 0 0
\(541\) −20.3318 20.3318i −0.874132 0.874132i 0.118787 0.992920i \(-0.462099\pi\)
−0.992920 + 0.118787i \(0.962099\pi\)
\(542\) 0 0
\(543\) 15.3867 0.660305
\(544\) 0 0
\(545\) −2.97421 −0.127401
\(546\) 0 0
\(547\) 7.93417 + 7.93417i 0.339241 + 0.339241i 0.856081 0.516841i \(-0.172892\pi\)
−0.516841 + 0.856081i \(0.672892\pi\)
\(548\) 0 0
\(549\) 20.2818 + 20.2818i 0.865605 + 0.865605i
\(550\) 0 0
\(551\) −4.33316 + 4.33316i −0.184599 + 0.184599i
\(552\) 0 0
\(553\) 21.5288i 0.915497i
\(554\) 0 0
\(555\) 7.97499 7.97499i 0.338519 0.338519i
\(556\) 0 0
\(557\) 37.4862 1.58834 0.794170 0.607696i \(-0.207906\pi\)
0.794170 + 0.607696i \(0.207906\pi\)
\(558\) 0 0
\(559\) 0.0907143i 0.00383681i
\(560\) 0 0
\(561\) −27.9839 20.7645i −1.18148 0.876678i
\(562\) 0 0
\(563\) 21.9751i 0.926140i 0.886322 + 0.463070i \(0.153252\pi\)
−0.886322 + 0.463070i \(0.846748\pi\)
\(564\) 0 0
\(565\) −10.1823 −0.428371
\(566\) 0 0
\(567\) −88.1663 + 88.1663i −3.70264 + 3.70264i
\(568\) 0 0
\(569\) 15.3425i 0.643190i 0.946877 + 0.321595i \(0.104219\pi\)
−0.946877 + 0.321595i \(0.895781\pi\)
\(570\) 0 0
\(571\) −1.57068 + 1.57068i −0.0657308 + 0.0657308i −0.739208 0.673477i \(-0.764800\pi\)
0.673477 + 0.739208i \(0.264800\pi\)
\(572\) 0 0
\(573\) −11.0810 11.0810i −0.462914 0.462914i
\(574\) 0 0
\(575\) 3.41421 + 3.41421i 0.142383 + 0.142383i
\(576\) 0 0
\(577\) 1.36685 0.0569026 0.0284513 0.999595i \(-0.490942\pi\)
0.0284513 + 0.999595i \(0.490942\pi\)
\(578\) 0 0
\(579\) 49.3744 2.05193
\(580\) 0 0
\(581\) −29.1342 29.1342i −1.20869 1.20869i
\(582\) 0 0
\(583\) 12.2187 + 12.2187i 0.506048 + 0.506048i
\(584\) 0 0
\(585\) 0.791953 0.791953i 0.0327432 0.0327432i
\(586\) 0 0
\(587\) 36.4050i 1.50260i 0.659963 + 0.751298i \(0.270572\pi\)
−0.659963 + 0.751298i \(0.729428\pi\)
\(588\) 0 0
\(589\) −5.73967 + 5.73967i −0.236499 + 0.236499i
\(590\) 0 0
\(591\) 22.4461 0.923311
\(592\) 0 0
\(593\) 20.7822i 0.853421i 0.904388 + 0.426711i \(0.140328\pi\)
−0.904388 + 0.426711i \(0.859672\pi\)
\(594\) 0 0
\(595\) −15.3049 11.3565i −0.627440 0.465571i
\(596\) 0 0
\(597\) 9.83661i 0.402586i
\(598\) 0 0
\(599\) −11.2961 −0.461546 −0.230773 0.973008i \(-0.574126\pi\)
−0.230773 + 0.973008i \(0.574126\pi\)
\(600\) 0 0
\(601\) −30.6356 + 30.6356i −1.24965 + 1.24965i −0.293779 + 0.955873i \(0.594913\pi\)
−0.955873 + 0.293779i \(0.905087\pi\)
\(602\) 0 0
\(603\) 12.1975i 0.496720i
\(604\) 0 0
\(605\) −3.05025 + 3.05025i −0.124010 + 0.124010i
\(606\) 0 0
\(607\) 28.6035 + 28.6035i 1.16098 + 1.16098i 0.984261 + 0.176719i \(0.0565484\pi\)
0.176719 + 0.984261i \(0.443452\pi\)
\(608\) 0 0
\(609\) 31.7724 + 31.7724i 1.28748 + 1.28748i
\(610\) 0 0
\(611\) 1.23572 0.0499918
\(612\) 0 0
\(613\) −6.73799 −0.272145 −0.136072 0.990699i \(-0.543448\pi\)
−0.136072 + 0.990699i \(0.543448\pi\)
\(614\) 0 0
\(615\) −18.0969 18.0969i −0.729736 0.729736i
\(616\) 0 0
\(617\) 17.4915 + 17.4915i 0.704182 + 0.704182i 0.965305 0.261124i \(-0.0840931\pi\)
−0.261124 + 0.965305i \(0.584093\pi\)
\(618\) 0 0
\(619\) −15.9442 + 15.9442i −0.640850 + 0.640850i −0.950764 0.309915i \(-0.899699\pi\)
0.309915 + 0.950764i \(0.399699\pi\)
\(620\) 0 0
\(621\) 73.8986i 2.96545i
\(622\) 0 0
\(623\) −52.2254 + 52.2254i −2.09237 + 2.09237i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 17.4133i 0.695419i
\(628\) 0 0
\(629\) 2.08430 + 14.0740i 0.0831063 + 0.561169i
\(630\) 0 0
\(631\) 5.83297i 0.232207i −0.993237 0.116103i \(-0.962960\pi\)
0.993237 0.116103i \(-0.0370404\pi\)
\(632\) 0 0
\(633\) 6.82467 0.271256
\(634\) 0 0
\(635\) 7.90838 7.90838i 0.313834 0.313834i
\(636\) 0 0
\(637\) 2.09420i 0.0829752i
\(638\) 0 0
\(639\) 14.1094 14.1094i 0.558160 0.558160i
\(640\) 0 0
\(641\) 8.08629 + 8.08629i 0.319389 + 0.319389i 0.848532 0.529143i \(-0.177487\pi\)
−0.529143 + 0.848532i \(0.677487\pi\)
\(642\) 0 0
\(643\) 2.42192 + 2.42192i 0.0955110 + 0.0955110i 0.753248 0.657737i \(-0.228486\pi\)
−0.657737 + 0.753248i \(0.728486\pi\)
\(644\) 0 0
\(645\) 2.03382 0.0800814
\(646\) 0 0
\(647\) −32.9671 −1.29607 −0.648035 0.761611i \(-0.724409\pi\)
−0.648035 + 0.761611i \(0.724409\pi\)
\(648\) 0 0
\(649\) −10.4536 10.4536i −0.410338 0.410338i
\(650\) 0 0
\(651\) 42.0855 + 42.0855i 1.64946 + 1.64946i
\(652\) 0 0
\(653\) 2.47382 2.47382i 0.0968080 0.0968080i −0.657044 0.753852i \(-0.728193\pi\)
0.753852 + 0.657044i \(0.228193\pi\)
\(654\) 0 0
\(655\) 14.9503i 0.584156i
\(656\) 0 0
\(657\) 44.7299 44.7299i 1.74508 1.74508i
\(658\) 0 0
\(659\) −38.0355 −1.48165 −0.740826 0.671697i \(-0.765566\pi\)
−0.740826 + 0.671697i \(0.765566\pi\)
\(660\) 0 0
\(661\) 16.7077i 0.649853i 0.945739 + 0.324926i \(0.105339\pi\)
−0.945739 + 0.324926i \(0.894661\pi\)
\(662\) 0 0
\(663\) 0.287804 + 1.94337i 0.0111774 + 0.0754744i
\(664\) 0 0
\(665\) 9.52364i 0.369311i
\(666\) 0 0
\(667\) 14.3608 0.556051
\(668\) 0 0
\(669\) 52.2746 52.2746i 2.02105 2.02105i
\(670\) 0 0
\(671\) 9.65390i 0.372685i
\(672\) 0 0
\(673\) 21.0829 21.0829i 0.812687 0.812687i −0.172349 0.985036i \(-0.555136\pi\)
0.985036 + 0.172349i \(0.0551356\pi\)
\(674\) 0 0
\(675\) −10.8222 10.8222i −0.416547 0.416547i
\(676\) 0 0
\(677\) 7.32517 + 7.32517i 0.281529 + 0.281529i 0.833719 0.552189i \(-0.186208\pi\)
−0.552189 + 0.833719i \(0.686208\pi\)
\(678\) 0 0
\(679\) 82.2432 3.15620
\(680\) 0 0
\(681\) 38.3587 1.46991
\(682\) 0 0
\(683\) 20.1403 + 20.1403i 0.770649 + 0.770649i 0.978220 0.207571i \(-0.0665559\pi\)
−0.207571 + 0.978220i \(0.566556\pi\)
\(684\) 0 0
\(685\) −10.0115 10.0115i −0.382518 0.382518i
\(686\) 0 0
\(687\) 59.8345 59.8345i 2.28283 2.28283i
\(688\) 0 0
\(689\) 0.974209i 0.0371144i
\(690\) 0 0
\(691\) −34.6090 + 34.6090i −1.31659 + 1.31659i −0.400132 + 0.916457i \(0.631036\pi\)
−0.916457 + 0.400132i \(0.868964\pi\)
\(692\) 0 0
\(693\) 91.8243 3.48812
\(694\) 0 0
\(695\) 21.3164i 0.808576i
\(696\) 0 0
\(697\) 31.9369 4.72969i 1.20969 0.179150i
\(698\) 0 0
\(699\) 44.6113i 1.68736i
\(700\) 0 0
\(701\) −8.53155 −0.322232 −0.161116 0.986935i \(-0.551509\pi\)
−0.161116 + 0.986935i \(0.551509\pi\)
\(702\) 0 0
\(703\) 5.02735 5.02735i 0.189610 0.189610i
\(704\) 0 0
\(705\) 27.7048i 1.04342i
\(706\) 0 0
\(707\) 25.0259 25.0259i 0.941196 0.941196i
\(708\) 0 0
\(709\) 9.95226 + 9.95226i 0.373765 + 0.373765i 0.868846 0.495082i \(-0.164862\pi\)
−0.495082 + 0.868846i \(0.664862\pi\)
\(710\) 0 0
\(711\) −25.3024 25.3024i −0.948913 0.948913i
\(712\) 0 0
\(713\) 19.0221 0.712385
\(714\) 0 0
\(715\) −0.376961 −0.0140975
\(716\) 0 0
\(717\) 58.8728 + 58.8728i 2.19865 + 2.19865i
\(718\) 0 0
\(719\) −2.74660 2.74660i −0.102431 0.102431i 0.654034 0.756465i \(-0.273075\pi\)
−0.756465 + 0.654034i \(0.773075\pi\)
\(720\) 0 0
\(721\) −26.3859 + 26.3859i −0.982661 + 0.982661i
\(722\) 0 0
\(723\) 26.1511i 0.972568i
\(724\) 0 0
\(725\) −2.10308 + 2.10308i −0.0781066 + 0.0781066i
\(726\) 0 0
\(727\) 43.7477 1.62251 0.811256 0.584691i \(-0.198784\pi\)
0.811256 + 0.584691i \(0.198784\pi\)
\(728\) 0 0
\(729\) 57.1710i 2.11745i
\(730\) 0 0
\(731\) −1.52884 + 2.06038i −0.0565461 + 0.0762061i
\(732\) 0 0
\(733\) 27.1945i 1.00445i 0.864737 + 0.502226i \(0.167485\pi\)
−0.864737 + 0.502226i \(0.832515\pi\)
\(734\) 0 0
\(735\) 46.9520 1.73185
\(736\) 0 0
\(737\) −2.90293 + 2.90293i −0.106931 + 0.106931i
\(738\) 0 0
\(739\) 14.5227i 0.534228i −0.963665 0.267114i \(-0.913930\pi\)
0.963665 0.267114i \(-0.0860700\pi\)
\(740\) 0 0
\(741\) 0.694187 0.694187i 0.0255016 0.0255016i
\(742\) 0 0
\(743\) −36.1912 36.1912i −1.32773 1.32773i −0.907351 0.420375i \(-0.861899\pi\)
−0.420375 0.907351i \(-0.638101\pi\)
\(744\) 0 0
\(745\) −7.26843 7.26843i −0.266295 0.266295i
\(746\) 0 0
\(747\) 68.4817 2.50562
\(748\) 0 0
\(749\) −10.9992 −0.401903
\(750\) 0 0
\(751\) −12.4234 12.4234i −0.453337 0.453337i 0.443124 0.896461i \(-0.353870\pi\)
−0.896461 + 0.443124i \(0.853870\pi\)
\(752\) 0 0
\(753\) −19.8984 19.8984i −0.725138 0.725138i
\(754\) 0 0
\(755\) −4.62226 + 4.62226i −0.168221 + 0.168221i
\(756\) 0 0
\(757\) 37.5091i 1.36329i −0.731682 0.681646i \(-0.761265\pi\)
0.731682 0.681646i \(-0.238735\pi\)
\(758\) 0 0
\(759\) 28.8551 28.8551i 1.04737 1.04737i
\(760\) 0 0
\(761\) −31.7851 −1.15221 −0.576105 0.817375i \(-0.695428\pi\)
−0.576105 + 0.817375i \(0.695428\pi\)
\(762\) 0 0
\(763\) 13.7476i 0.497695i
\(764\) 0 0
\(765\) 31.3346 4.64050i 1.13291 0.167778i
\(766\) 0 0
\(767\) 0.833470i 0.0300949i
\(768\) 0 0
\(769\) −31.9023 −1.15043 −0.575213 0.818004i \(-0.695081\pi\)
−0.575213 + 0.818004i \(0.695081\pi\)
\(770\) 0 0
\(771\) 31.8880 31.8880i 1.14842 1.14842i
\(772\) 0 0
\(773\) 27.0913i 0.974408i −0.873288 0.487204i \(-0.838017\pi\)
0.873288 0.487204i \(-0.161983\pi\)
\(774\) 0 0
\(775\) −2.78573 + 2.78573i −0.100066 + 0.100066i
\(776\) 0 0
\(777\) −36.8625 36.8625i −1.32243 1.32243i
\(778\) 0 0
\(779\) −11.4081 11.4081i −0.408736 0.408736i
\(780\) 0 0
\(781\) −6.71593 −0.240315
\(782\) 0 0
\(783\) −45.5200 −1.62675
\(784\) 0 0
\(785\) 8.79195 + 8.79195i 0.313798 + 0.313798i
\(786\) 0 0
\(787\) 37.0771 + 37.0771i 1.32166 + 1.32166i 0.912436 + 0.409219i \(0.134199\pi\)
0.409219 + 0.912436i \(0.365801\pi\)
\(788\) 0 0
\(789\) −51.6007 + 51.6007i −1.83703 + 1.83703i
\(790\) 0 0
\(791\) 47.0650i 1.67344i
\(792\) 0 0
\(793\) −0.384857 + 0.384857i −0.0136667 + 0.0136667i
\(794\) 0 0
\(795\) −21.8418 −0.774648
\(796\) 0 0
\(797\) 34.4375i 1.21984i −0.792464 0.609919i \(-0.791202\pi\)
0.792464 0.609919i \(-0.208798\pi\)
\(798\) 0 0
\(799\) 28.0667 + 20.8260i 0.992929 + 0.736770i
\(800\) 0 0
\(801\) 122.759i 4.33748i
\(802\) 0 0
\(803\) −21.2909 −0.751341
\(804\) 0 0
\(805\) 15.7814 15.7814i 0.556221 0.556221i
\(806\) 0 0
\(807\) 52.1144i 1.83451i
\(808\) 0 0
\(809\) −4.90215 + 4.90215i −0.172351 + 0.172351i −0.788011 0.615661i \(-0.788889\pi\)
0.615661 + 0.788011i \(0.288889\pi\)
\(810\) 0 0
\(811\) 16.9360 + 16.9360i 0.594702 + 0.594702i 0.938898 0.344196i \(-0.111848\pi\)
−0.344196 + 0.938898i \(0.611848\pi\)
\(812\) 0 0
\(813\) 71.3596 + 71.3596i 2.50269 + 2.50269i
\(814\) 0 0
\(815\) 0.795713 0.0278726
\(816\) 0 0
\(817\) 1.28210 0.0448549
\(818\) 0 0
\(819\) −3.66061 3.66061i −0.127912 0.127912i
\(820\) 0 0
\(821\) 14.1244 + 14.1244i 0.492947 + 0.492947i 0.909233 0.416287i \(-0.136669\pi\)
−0.416287 + 0.909233i \(0.636669\pi\)
\(822\) 0 0
\(823\) −4.17345 + 4.17345i −0.145477 + 0.145477i −0.776094 0.630617i \(-0.782802\pi\)
0.630617 + 0.776094i \(0.282802\pi\)
\(824\) 0 0
\(825\) 8.45147i 0.294242i
\(826\) 0 0
\(827\) 18.0258 18.0258i 0.626818 0.626818i −0.320448 0.947266i \(-0.603833\pi\)
0.947266 + 0.320448i \(0.103833\pi\)
\(828\) 0 0
\(829\) 18.4375 0.640359 0.320180 0.947357i \(-0.396257\pi\)
0.320180 + 0.947357i \(0.396257\pi\)
\(830\) 0 0
\(831\) 91.2086i 3.16399i
\(832\) 0 0
\(833\) −35.2943 + 47.5653i −1.22287 + 1.64804i
\(834\) 0 0
\(835\) 4.75548i 0.164570i
\(836\) 0 0
\(837\) −60.2954 −2.08412
\(838\) 0 0
\(839\) −8.28424 + 8.28424i −0.286004 + 0.286004i −0.835498 0.549494i \(-0.814821\pi\)
0.549494 + 0.835498i \(0.314821\pi\)
\(840\) 0 0
\(841\) 20.1541i 0.694968i
\(842\) 0 0
\(843\) 23.7767 23.7767i 0.818914 0.818914i
\(844\) 0 0
\(845\) −9.17736 9.17736i −0.315711 0.315711i
\(846\) 0 0
\(847\) 14.0991 + 14.0991i 0.484449 + 0.484449i
\(848\) 0 0
\(849\) 39.3692 1.35115
\(850\) 0 0
\(851\) −16.6614 −0.571145
\(852\) 0 0
\(853\) 9.64915 + 9.64915i 0.330381 + 0.330381i 0.852731 0.522350i \(-0.174945\pi\)
−0.522350 + 0.852731i \(0.674945\pi\)
\(854\) 0 0
\(855\) −11.1929 11.1929i −0.382790 0.382790i
\(856\) 0 0
\(857\) 22.9313 22.9313i 0.783318 0.783318i −0.197071 0.980389i \(-0.563143\pi\)
0.980389 + 0.197071i \(0.0631429\pi\)
\(858\) 0 0
\(859\) 14.1902i 0.484164i 0.970256 + 0.242082i \(0.0778304\pi\)
−0.970256 + 0.242082i \(0.922170\pi\)
\(860\) 0 0
\(861\) −83.6484 + 83.6484i −2.85073 + 2.85073i
\(862\) 0 0
\(863\) 52.0480 1.77174 0.885868 0.463937i \(-0.153564\pi\)
0.885868 + 0.463937i \(0.153564\pi\)
\(864\) 0 0
\(865\) 12.7306i 0.432853i
\(866\) 0 0
\(867\) −26.2155 + 48.9901i −0.890325 + 1.66379i
\(868\) 0 0
\(869\) 12.0436i 0.408553i
\(870\) 0 0
\(871\) 0.231453 0.00784249
\(872\) 0 0
\(873\) −96.6588 + 96.6588i −3.27140 + 3.27140i
\(874\) 0 0
\(875\) 4.62226i 0.156261i
\(876\) 0 0
\(877\) 3.85156 3.85156i 0.130058 0.130058i −0.639081 0.769139i \(-0.720685\pi\)
0.769139 + 0.639081i \(0.220685\pi\)
\(878\) 0 0
\(879\) −70.7261 70.7261i −2.38553 2.38553i
\(880\) 0 0
\(881\) 12.6672 + 12.6672i 0.426769 + 0.426769i 0.887526 0.460757i \(-0.152422\pi\)
−0.460757 + 0.887526i \(0.652422\pi\)
\(882\) 0 0
\(883\) −15.1362 −0.509374 −0.254687 0.967024i \(-0.581972\pi\)
−0.254687 + 0.967024i \(0.581972\pi\)
\(884\) 0 0
\(885\) 18.6864 0.628137
\(886\) 0 0
\(887\) 29.5122 + 29.5122i 0.990922 + 0.990922i 0.999959 0.00903736i \(-0.00287672\pi\)
−0.00903736 + 0.999959i \(0.502877\pi\)
\(888\) 0 0
\(889\) −36.5546 36.5546i −1.22600 1.22600i
\(890\) 0 0
\(891\) −49.3220 + 49.3220i −1.65235 + 1.65235i
\(892\) 0 0
\(893\) 17.4648i 0.584438i
\(894\) 0 0
\(895\) 0.120770 0.120770i 0.00403689 0.00403689i
\(896\) 0 0
\(897\) −2.30064 −0.0768162
\(898\) 0 0
\(899\) 11.7172i 0.390792i
\(900\) 0 0
\(901\) 16.4187 22.1271i 0.546985 0.737161i
\(902\) 0 0
\(903\) 9.40082i 0.312840i
\(904\) 0 0
\(905\) 4.70766 0.156488
\(906\) 0 0
\(907\) 9.65865 9.65865i 0.320710 0.320710i −0.528329 0.849040i \(-0.677181\pi\)
0.849040 + 0.528329i \(0.177181\pi\)
\(908\) 0 0
\(909\) 58.8249i 1.95110i
\(910\) 0 0
\(911\) −0.866458 + 0.866458i −0.0287070 + 0.0287070i −0.721315 0.692608i \(-0.756462\pi\)
0.692608 + 0.721315i \(0.256462\pi\)
\(912\) 0 0
\(913\) −16.2983 16.2983i −0.539394 0.539394i
\(914\) 0 0
\(915\) 8.62848 + 8.62848i 0.285249 + 0.285249i
\(916\) 0 0
\(917\) −69.1042 −2.28202
\(918\) 0 0
\(919\) −21.7152 −0.716317 −0.358158 0.933661i \(-0.616595\pi\)
−0.358158 + 0.933661i \(0.616595\pi\)
\(920\) 0 0
\(921\) 31.4933 + 31.4933i 1.03774 + 1.03774i
\(922\) 0 0
\(923\) 0.267733 + 0.267733i 0.00881255 + 0.00881255i
\(924\) 0 0
\(925\) 2.44000 2.44000i 0.0802269 0.0802269i
\(926\) 0 0
\(927\) 62.0216i 2.03706i
\(928\) 0 0
\(929\) −14.9022 + 14.9022i −0.488924 + 0.488924i −0.907967 0.419043i \(-0.862366\pi\)
0.419043 + 0.907967i \(0.362366\pi\)
\(930\) 0 0
\(931\) 29.5980 0.970036
\(932\) 0 0
\(933\) 40.3427i 1.32076i
\(934\) 0 0
\(935\) −8.56188 6.35305i −0.280003 0.207767i
\(936\) 0 0
\(937\) 48.3234i 1.57866i 0.613971 + 0.789328i \(0.289571\pi\)
−0.613971 + 0.789328i \(0.710429\pi\)
\(938\) 0 0
\(939\) −40.3683 −1.31737
\(940\) 0 0
\(941\) 11.0045 11.0045i 0.358735 0.358735i −0.504611 0.863347i \(-0.668364\pi\)
0.863347 + 0.504611i \(0.168364\pi\)
\(942\) 0 0
\(943\) 37.8081i 1.23120i
\(944\) 0 0
\(945\) −50.0230 + 50.0230i −1.62725 + 1.62725i
\(946\) 0 0
\(947\) −21.4879 21.4879i −0.698262 0.698262i 0.265774 0.964035i \(-0.414373\pi\)
−0.964035 + 0.265774i \(0.914373\pi\)
\(948\) 0 0
\(949\) 0.848772 + 0.848772i 0.0275523 + 0.0275523i
\(950\) 0 0
\(951\) 52.3647 1.69804
\(952\) 0 0
\(953\) −18.6150 −0.602998 −0.301499 0.953467i \(-0.597487\pi\)
−0.301499 + 0.953467i \(0.597487\pi\)
\(954\) 0 0
\(955\) −3.39030 3.39030i −0.109708 0.109708i
\(956\) 0 0
\(957\) 17.7741 + 17.7741i 0.574556 + 0.574556i
\(958\) 0 0
\(959\) −46.2756 + 46.2756i −1.49432 + 1.49432i
\(960\) 0 0
\(961\) 15.4794i 0.499337i
\(962\) 0 0
\(963\) 12.9272 12.9272i 0.416572 0.416572i
\(964\) 0 0
\(965\) 15.1064 0.486294
\(966\) 0 0
\(967\) 24.1990i 0.778188i −0.921198 0.389094i \(-0.872788\pi\)
0.921198 0.389094i \(-0.127212\pi\)
\(968\) 0 0
\(969\) 27.4664 4.06763i 0.882347 0.130671i
\(970\) 0 0
\(971\) 23.8896i 0.766653i −0.923613 0.383327i \(-0.874778\pi\)
0.923613 0.383327i \(-0.125222\pi\)
\(972\) 0 0
\(973\) 98.5298 3.15872
\(974\) 0 0
\(975\) 0.336921 0.336921i 0.0107901 0.0107901i
\(976\) 0 0
\(977\) 23.3337i 0.746510i 0.927729 + 0.373255i \(0.121758\pi\)
−0.927729 + 0.373255i \(0.878242\pi\)
\(978\) 0 0
\(979\) −29.2160 + 29.2160i −0.933747 + 0.933747i
\(980\) 0 0
\(981\) −16.1572 16.1572i −0.515861 0.515861i
\(982\) 0 0
\(983\) −37.4373 37.4373i −1.19406 1.19406i −0.975916 0.218147i \(-0.929999\pi\)
−0.218147 0.975916i \(-0.570001\pi\)
\(984\) 0 0
\(985\) 6.86756 0.218819
\(986\) 0 0
\(987\) −128.059 −4.07615
\(988\) 0 0
\(989\) −2.12453 2.12453i −0.0675561 0.0675561i
\(990\) 0 0
\(991\) −39.1164 39.1164i −1.24257 1.24257i −0.958929 0.283645i \(-0.908456\pi\)
−0.283645 0.958929i \(-0.591544\pi\)
\(992\) 0 0
\(993\) 24.3811 24.3811i 0.773711 0.773711i
\(994\) 0 0
\(995\) 3.00958i 0.0954102i
\(996\) 0 0
\(997\) 36.7958 36.7958i 1.16534 1.16534i 0.182045 0.983290i \(-0.441728\pi\)
0.983290 0.182045i \(-0.0582718\pi\)
\(998\) 0 0
\(999\) 52.8124 1.67091
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.bt.b.81.4 8
4.3 odd 2 170.2.h.b.81.1 yes 8
12.11 even 2 1530.2.q.g.1441.1 8
17.4 even 4 inner 1360.2.bt.b.1041.4 8
20.3 even 4 850.2.g.l.149.4 8
20.7 even 4 850.2.g.i.149.1 8
20.19 odd 2 850.2.h.n.251.4 8
68.15 odd 8 2890.2.a.be.1.4 4
68.19 odd 8 2890.2.a.bd.1.1 4
68.43 odd 8 2890.2.b.o.2311.1 8
68.55 odd 4 170.2.h.b.21.1 8
68.59 odd 8 2890.2.b.o.2311.8 8
204.191 even 4 1530.2.q.g.361.1 8
340.123 even 4 850.2.g.i.599.1 8
340.259 odd 4 850.2.h.n.701.4 8
340.327 even 4 850.2.g.l.599.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.h.b.21.1 8 68.55 odd 4
170.2.h.b.81.1 yes 8 4.3 odd 2
850.2.g.i.149.1 8 20.7 even 4
850.2.g.i.599.1 8 340.123 even 4
850.2.g.l.149.4 8 20.3 even 4
850.2.g.l.599.4 8 340.327 even 4
850.2.h.n.251.4 8 20.19 odd 2
850.2.h.n.701.4 8 340.259 odd 4
1360.2.bt.b.81.4 8 1.1 even 1 trivial
1360.2.bt.b.1041.4 8 17.4 even 4 inner
1530.2.q.g.361.1 8 204.191 even 4
1530.2.q.g.1441.1 8 12.11 even 2
2890.2.a.bd.1.1 4 68.19 odd 8
2890.2.a.be.1.4 4 68.15 odd 8
2890.2.b.o.2311.1 8 68.43 odd 8
2890.2.b.o.2311.8 8 68.59 odd 8