Properties

Label 2-85e2-1.1-c1-0-116
Degree $2$
Conductor $7225$
Sign $1$
Analytic cond. $57.6919$
Root an. cond. $7.59551$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.41·3-s − 4-s − 1.41·6-s + 4.24·7-s − 3·8-s − 0.999·9-s + 4.24·11-s + 1.41·12-s + 4.24·14-s − 16-s − 0.999·18-s − 6·19-s − 6·21-s + 4.24·22-s − 1.41·23-s + 4.24·24-s + 5.65·27-s − 4.24·28-s + 4.24·29-s + 1.41·31-s + 5·32-s − 6·33-s + 0.999·36-s − 4.24·37-s − 6·38-s − 4.24·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.816·3-s − 0.5·4-s − 0.577·6-s + 1.60·7-s − 1.06·8-s − 0.333·9-s + 1.27·11-s + 0.408·12-s + 1.13·14-s − 0.250·16-s − 0.235·18-s − 1.37·19-s − 1.30·21-s + 0.904·22-s − 0.294·23-s + 0.866·24-s + 1.08·27-s − 0.801·28-s + 0.787·29-s + 0.254·31-s + 0.883·32-s − 1.04·33-s + 0.166·36-s − 0.697·37-s − 0.973·38-s − 0.662·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7225\)    =    \(5^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(57.6919\)
Root analytic conductor: \(7.59551\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7225,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.950714695\)
\(L(\frac12)\) \(\approx\) \(1.950714695\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 \)
good2 \( 1 - T + 2T^{2} \)
3 \( 1 + 1.41T + 3T^{2} \)
7 \( 1 - 4.24T + 7T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
19 \( 1 + 6T + 19T^{2} \)
23 \( 1 + 1.41T + 23T^{2} \)
29 \( 1 - 4.24T + 29T^{2} \)
31 \( 1 - 1.41T + 31T^{2} \)
37 \( 1 + 4.24T + 37T^{2} \)
41 \( 1 + 4.24T + 41T^{2} \)
43 \( 1 - 12T + 43T^{2} \)
47 \( 1 - 2T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 - 1.41T + 61T^{2} \)
67 \( 1 + 6T + 67T^{2} \)
71 \( 1 + 4.24T + 71T^{2} \)
73 \( 1 + 4.24T + 73T^{2} \)
79 \( 1 + 9.89T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 - 4.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.034644587788928071412803740751, −6.99366954175650791454059751724, −6.25976830874351044227757554532, −5.71784662991099448350004152575, −5.04440987493722448484406740064, −4.36258996367297469945829769524, −4.03633826295134161834150902256, −2.80616085018079810668167867651, −1.72379836756367044463261245269, −0.68700246874957017145831642276, 0.68700246874957017145831642276, 1.72379836756367044463261245269, 2.80616085018079810668167867651, 4.03633826295134161834150902256, 4.36258996367297469945829769524, 5.04440987493722448484406740064, 5.71784662991099448350004152575, 6.25976830874351044227757554532, 6.99366954175650791454059751724, 8.034644587788928071412803740751

Graph of the $Z$-function along the critical line