Properties

Label 7225.2.a.p.1.1
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.41421 q^{3} -1.00000 q^{4} -1.41421 q^{6} +4.24264 q^{7} -3.00000 q^{8} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.41421 q^{3} -1.00000 q^{4} -1.41421 q^{6} +4.24264 q^{7} -3.00000 q^{8} -1.00000 q^{9} +4.24264 q^{11} +1.41421 q^{12} +4.24264 q^{14} -1.00000 q^{16} -1.00000 q^{18} -6.00000 q^{19} -6.00000 q^{21} +4.24264 q^{22} -1.41421 q^{23} +4.24264 q^{24} +5.65685 q^{27} -4.24264 q^{28} +4.24264 q^{29} +1.41421 q^{31} +5.00000 q^{32} -6.00000 q^{33} +1.00000 q^{36} -4.24264 q^{37} -6.00000 q^{38} -4.24264 q^{41} -6.00000 q^{42} +12.0000 q^{43} -4.24264 q^{44} -1.41421 q^{46} +2.00000 q^{47} +1.41421 q^{48} +11.0000 q^{49} +2.00000 q^{53} +5.65685 q^{54} -12.7279 q^{56} +8.48528 q^{57} +4.24264 q^{58} +6.00000 q^{59} +1.41421 q^{61} +1.41421 q^{62} -4.24264 q^{63} +7.00000 q^{64} -6.00000 q^{66} -6.00000 q^{67} +2.00000 q^{69} -4.24264 q^{71} +3.00000 q^{72} -4.24264 q^{73} -4.24264 q^{74} +6.00000 q^{76} +18.0000 q^{77} -9.89949 q^{79} -5.00000 q^{81} -4.24264 q^{82} -4.00000 q^{83} +6.00000 q^{84} +12.0000 q^{86} -6.00000 q^{87} -12.7279 q^{88} +6.00000 q^{89} +1.41421 q^{92} -2.00000 q^{93} +2.00000 q^{94} -7.07107 q^{96} +4.24264 q^{97} +11.0000 q^{98} -4.24264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} - 6 q^{8} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - 2 q^{4} - 6 q^{8} - 2 q^{9} - 2 q^{16} - 2 q^{18} - 12 q^{19} - 12 q^{21} + 10 q^{32} - 12 q^{33} + 2 q^{36} - 12 q^{38} - 12 q^{42} + 24 q^{43} + 4 q^{47} + 22 q^{49} + 4 q^{53} + 12 q^{59} + 14 q^{64} - 12 q^{66} - 12 q^{67} + 4 q^{69} + 6 q^{72} + 12 q^{76} + 36 q^{77} - 10 q^{81} - 8 q^{83} + 12 q^{84} + 24 q^{86} - 12 q^{87} + 12 q^{89} - 4 q^{93} + 4 q^{94} + 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107 0.353553 0.935414i \(-0.384973\pi\)
0.353553 + 0.935414i \(0.384973\pi\)
\(3\) −1.41421 −0.816497 −0.408248 0.912871i \(-0.633860\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.41421 −0.577350
\(7\) 4.24264 1.60357 0.801784 0.597614i \(-0.203885\pi\)
0.801784 + 0.597614i \(0.203885\pi\)
\(8\) −3.00000 −1.06066
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.24264 1.27920 0.639602 0.768706i \(-0.279099\pi\)
0.639602 + 0.768706i \(0.279099\pi\)
\(12\) 1.41421 0.408248
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 4.24264 1.13389
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 0 0
\(18\) −1.00000 −0.235702
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) −6.00000 −1.30931
\(22\) 4.24264 0.904534
\(23\) −1.41421 −0.294884 −0.147442 0.989071i \(-0.547104\pi\)
−0.147442 + 0.989071i \(0.547104\pi\)
\(24\) 4.24264 0.866025
\(25\) 0 0
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) −4.24264 −0.801784
\(29\) 4.24264 0.787839 0.393919 0.919145i \(-0.371119\pi\)
0.393919 + 0.919145i \(0.371119\pi\)
\(30\) 0 0
\(31\) 1.41421 0.254000 0.127000 0.991903i \(-0.459465\pi\)
0.127000 + 0.991903i \(0.459465\pi\)
\(32\) 5.00000 0.883883
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −4.24264 −0.697486 −0.348743 0.937218i \(-0.613391\pi\)
−0.348743 + 0.937218i \(0.613391\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 0 0
\(41\) −4.24264 −0.662589 −0.331295 0.943527i \(-0.607485\pi\)
−0.331295 + 0.943527i \(0.607485\pi\)
\(42\) −6.00000 −0.925820
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) −4.24264 −0.639602
\(45\) 0 0
\(46\) −1.41421 −0.208514
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 1.41421 0.204124
\(49\) 11.0000 1.57143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 5.65685 0.769800
\(55\) 0 0
\(56\) −12.7279 −1.70084
\(57\) 8.48528 1.12390
\(58\) 4.24264 0.557086
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 1.41421 0.181071 0.0905357 0.995893i \(-0.471142\pi\)
0.0905357 + 0.995893i \(0.471142\pi\)
\(62\) 1.41421 0.179605
\(63\) −4.24264 −0.534522
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −6.00000 −0.738549
\(67\) −6.00000 −0.733017 −0.366508 0.930415i \(-0.619447\pi\)
−0.366508 + 0.930415i \(0.619447\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −4.24264 −0.503509 −0.251754 0.967791i \(-0.581008\pi\)
−0.251754 + 0.967791i \(0.581008\pi\)
\(72\) 3.00000 0.353553
\(73\) −4.24264 −0.496564 −0.248282 0.968688i \(-0.579866\pi\)
−0.248282 + 0.968688i \(0.579866\pi\)
\(74\) −4.24264 −0.493197
\(75\) 0 0
\(76\) 6.00000 0.688247
\(77\) 18.0000 2.05129
\(78\) 0 0
\(79\) −9.89949 −1.11378 −0.556890 0.830586i \(-0.688006\pi\)
−0.556890 + 0.830586i \(0.688006\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) −4.24264 −0.468521
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 6.00000 0.654654
\(85\) 0 0
\(86\) 12.0000 1.29399
\(87\) −6.00000 −0.643268
\(88\) −12.7279 −1.35680
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.41421 0.147442
\(93\) −2.00000 −0.207390
\(94\) 2.00000 0.206284
\(95\) 0 0
\(96\) −7.07107 −0.721688
\(97\) 4.24264 0.430775 0.215387 0.976529i \(-0.430899\pi\)
0.215387 + 0.976529i \(0.430899\pi\)
\(98\) 11.0000 1.11117
\(99\) −4.24264 −0.426401
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) −12.7279 −1.23045 −0.615227 0.788350i \(-0.710936\pi\)
−0.615227 + 0.788350i \(0.710936\pi\)
\(108\) −5.65685 −0.544331
\(109\) 9.89949 0.948200 0.474100 0.880471i \(-0.342774\pi\)
0.474100 + 0.880471i \(0.342774\pi\)
\(110\) 0 0
\(111\) 6.00000 0.569495
\(112\) −4.24264 −0.400892
\(113\) 12.7279 1.19734 0.598671 0.800995i \(-0.295696\pi\)
0.598671 + 0.800995i \(0.295696\pi\)
\(114\) 8.48528 0.794719
\(115\) 0 0
\(116\) −4.24264 −0.393919
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 1.41421 0.128037
\(123\) 6.00000 0.541002
\(124\) −1.41421 −0.127000
\(125\) 0 0
\(126\) −4.24264 −0.377964
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −3.00000 −0.265165
\(129\) −16.9706 −1.49417
\(130\) 0 0
\(131\) 4.24264 0.370681 0.185341 0.982674i \(-0.440661\pi\)
0.185341 + 0.982674i \(0.440661\pi\)
\(132\) 6.00000 0.522233
\(133\) −25.4558 −2.20730
\(134\) −6.00000 −0.518321
\(135\) 0 0
\(136\) 0 0
\(137\) −4.00000 −0.341743 −0.170872 0.985293i \(-0.554658\pi\)
−0.170872 + 0.985293i \(0.554658\pi\)
\(138\) 2.00000 0.170251
\(139\) 9.89949 0.839664 0.419832 0.907602i \(-0.362089\pi\)
0.419832 + 0.907602i \(0.362089\pi\)
\(140\) 0 0
\(141\) −2.82843 −0.238197
\(142\) −4.24264 −0.356034
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −4.24264 −0.351123
\(147\) −15.5563 −1.28307
\(148\) 4.24264 0.348743
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) 18.0000 1.45999
\(153\) 0 0
\(154\) 18.0000 1.45048
\(155\) 0 0
\(156\) 0 0
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) −9.89949 −0.787562
\(159\) −2.82843 −0.224309
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) −5.00000 −0.392837
\(163\) 12.7279 0.996928 0.498464 0.866910i \(-0.333898\pi\)
0.498464 + 0.866910i \(0.333898\pi\)
\(164\) 4.24264 0.331295
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) −4.24264 −0.328305 −0.164153 0.986435i \(-0.552489\pi\)
−0.164153 + 0.986435i \(0.552489\pi\)
\(168\) 18.0000 1.38873
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) −12.0000 −0.914991
\(173\) 21.2132 1.61281 0.806405 0.591364i \(-0.201410\pi\)
0.806405 + 0.591364i \(0.201410\pi\)
\(174\) −6.00000 −0.454859
\(175\) 0 0
\(176\) −4.24264 −0.319801
\(177\) −8.48528 −0.637793
\(178\) 6.00000 0.449719
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) 15.5563 1.15629 0.578147 0.815933i \(-0.303776\pi\)
0.578147 + 0.815933i \(0.303776\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 4.24264 0.312772
\(185\) 0 0
\(186\) −2.00000 −0.146647
\(187\) 0 0
\(188\) −2.00000 −0.145865
\(189\) 24.0000 1.74574
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) −9.89949 −0.714435
\(193\) −4.24264 −0.305392 −0.152696 0.988273i \(-0.548796\pi\)
−0.152696 + 0.988273i \(0.548796\pi\)
\(194\) 4.24264 0.304604
\(195\) 0 0
\(196\) −11.0000 −0.785714
\(197\) 18.3848 1.30986 0.654931 0.755689i \(-0.272698\pi\)
0.654931 + 0.755689i \(0.272698\pi\)
\(198\) −4.24264 −0.301511
\(199\) 1.41421 0.100251 0.0501255 0.998743i \(-0.484038\pi\)
0.0501255 + 0.998743i \(0.484038\pi\)
\(200\) 0 0
\(201\) 8.48528 0.598506
\(202\) −6.00000 −0.422159
\(203\) 18.0000 1.26335
\(204\) 0 0
\(205\) 0 0
\(206\) −6.00000 −0.418040
\(207\) 1.41421 0.0982946
\(208\) 0 0
\(209\) −25.4558 −1.76082
\(210\) 0 0
\(211\) 24.0416 1.65509 0.827547 0.561396i \(-0.189736\pi\)
0.827547 + 0.561396i \(0.189736\pi\)
\(212\) −2.00000 −0.137361
\(213\) 6.00000 0.411113
\(214\) −12.7279 −0.870063
\(215\) 0 0
\(216\) −16.9706 −1.15470
\(217\) 6.00000 0.407307
\(218\) 9.89949 0.670478
\(219\) 6.00000 0.405442
\(220\) 0 0
\(221\) 0 0
\(222\) 6.00000 0.402694
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 21.2132 1.41737
\(225\) 0 0
\(226\) 12.7279 0.846649
\(227\) −21.2132 −1.40797 −0.703985 0.710215i \(-0.748598\pi\)
−0.703985 + 0.710215i \(0.748598\pi\)
\(228\) −8.48528 −0.561951
\(229\) 24.0000 1.58596 0.792982 0.609245i \(-0.208527\pi\)
0.792982 + 0.609245i \(0.208527\pi\)
\(230\) 0 0
\(231\) −25.4558 −1.67487
\(232\) −12.7279 −0.835629
\(233\) 7.07107 0.463241 0.231621 0.972806i \(-0.425597\pi\)
0.231621 + 0.972806i \(0.425597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 14.0000 0.909398
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) 26.8701 1.73085 0.865426 0.501036i \(-0.167048\pi\)
0.865426 + 0.501036i \(0.167048\pi\)
\(242\) 7.00000 0.449977
\(243\) −9.89949 −0.635053
\(244\) −1.41421 −0.0905357
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) 0 0
\(248\) −4.24264 −0.269408
\(249\) 5.65685 0.358489
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 4.24264 0.267261
\(253\) −6.00000 −0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) −16.9706 −1.05654
\(259\) −18.0000 −1.11847
\(260\) 0 0
\(261\) −4.24264 −0.262613
\(262\) 4.24264 0.262111
\(263\) −16.0000 −0.986602 −0.493301 0.869859i \(-0.664210\pi\)
−0.493301 + 0.869859i \(0.664210\pi\)
\(264\) 18.0000 1.10782
\(265\) 0 0
\(266\) −25.4558 −1.56080
\(267\) −8.48528 −0.519291
\(268\) 6.00000 0.366508
\(269\) −4.24264 −0.258678 −0.129339 0.991600i \(-0.541286\pi\)
−0.129339 + 0.991600i \(0.541286\pi\)
\(270\) 0 0
\(271\) 24.0000 1.45790 0.728948 0.684569i \(-0.240010\pi\)
0.728948 + 0.684569i \(0.240010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −4.00000 −0.241649
\(275\) 0 0
\(276\) −2.00000 −0.120386
\(277\) −29.6985 −1.78441 −0.892205 0.451632i \(-0.850842\pi\)
−0.892205 + 0.451632i \(0.850842\pi\)
\(278\) 9.89949 0.593732
\(279\) −1.41421 −0.0846668
\(280\) 0 0
\(281\) 24.0000 1.43172 0.715860 0.698244i \(-0.246035\pi\)
0.715860 + 0.698244i \(0.246035\pi\)
\(282\) −2.82843 −0.168430
\(283\) −12.7279 −0.756596 −0.378298 0.925684i \(-0.623491\pi\)
−0.378298 + 0.925684i \(0.623491\pi\)
\(284\) 4.24264 0.251754
\(285\) 0 0
\(286\) 0 0
\(287\) −18.0000 −1.06251
\(288\) −5.00000 −0.294628
\(289\) 0 0
\(290\) 0 0
\(291\) −6.00000 −0.351726
\(292\) 4.24264 0.248282
\(293\) 4.00000 0.233682 0.116841 0.993151i \(-0.462723\pi\)
0.116841 + 0.993151i \(0.462723\pi\)
\(294\) −15.5563 −0.907265
\(295\) 0 0
\(296\) 12.7279 0.739795
\(297\) 24.0000 1.39262
\(298\) −18.0000 −1.04271
\(299\) 0 0
\(300\) 0 0
\(301\) 50.9117 2.93450
\(302\) 10.0000 0.575435
\(303\) 8.48528 0.487467
\(304\) 6.00000 0.344124
\(305\) 0 0
\(306\) 0 0
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) −18.0000 −1.02565
\(309\) 8.48528 0.482711
\(310\) 0 0
\(311\) 4.24264 0.240578 0.120289 0.992739i \(-0.461618\pi\)
0.120289 + 0.992739i \(0.461618\pi\)
\(312\) 0 0
\(313\) 4.24264 0.239808 0.119904 0.992785i \(-0.461741\pi\)
0.119904 + 0.992785i \(0.461741\pi\)
\(314\) 12.0000 0.677199
\(315\) 0 0
\(316\) 9.89949 0.556890
\(317\) 21.2132 1.19145 0.595726 0.803188i \(-0.296864\pi\)
0.595726 + 0.803188i \(0.296864\pi\)
\(318\) −2.82843 −0.158610
\(319\) 18.0000 1.00781
\(320\) 0 0
\(321\) 18.0000 1.00466
\(322\) −6.00000 −0.334367
\(323\) 0 0
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 12.7279 0.704934
\(327\) −14.0000 −0.774202
\(328\) 12.7279 0.702782
\(329\) 8.48528 0.467809
\(330\) 0 0
\(331\) 18.0000 0.989369 0.494685 0.869072i \(-0.335284\pi\)
0.494685 + 0.869072i \(0.335284\pi\)
\(332\) 4.00000 0.219529
\(333\) 4.24264 0.232495
\(334\) −4.24264 −0.232147
\(335\) 0 0
\(336\) 6.00000 0.327327
\(337\) −21.2132 −1.15556 −0.577778 0.816194i \(-0.696080\pi\)
−0.577778 + 0.816194i \(0.696080\pi\)
\(338\) −13.0000 −0.707107
\(339\) −18.0000 −0.977626
\(340\) 0 0
\(341\) 6.00000 0.324918
\(342\) 6.00000 0.324443
\(343\) 16.9706 0.916324
\(344\) −36.0000 −1.94099
\(345\) 0 0
\(346\) 21.2132 1.14043
\(347\) −12.7279 −0.683271 −0.341635 0.939833i \(-0.610981\pi\)
−0.341635 + 0.939833i \(0.610981\pi\)
\(348\) 6.00000 0.321634
\(349\) 28.0000 1.49881 0.749403 0.662114i \(-0.230341\pi\)
0.749403 + 0.662114i \(0.230341\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 21.2132 1.13067
\(353\) −16.0000 −0.851594 −0.425797 0.904819i \(-0.640006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) −8.48528 −0.450988
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) 6.00000 0.317110
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 15.5563 0.817624
\(363\) −9.89949 −0.519589
\(364\) 0 0
\(365\) 0 0
\(366\) −2.00000 −0.104542
\(367\) 4.24264 0.221464 0.110732 0.993850i \(-0.464680\pi\)
0.110732 + 0.993850i \(0.464680\pi\)
\(368\) 1.41421 0.0737210
\(369\) 4.24264 0.220863
\(370\) 0 0
\(371\) 8.48528 0.440534
\(372\) 2.00000 0.103695
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) 0 0
\(378\) 24.0000 1.23443
\(379\) −15.5563 −0.799076 −0.399538 0.916717i \(-0.630829\pi\)
−0.399538 + 0.916717i \(0.630829\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.0000 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(384\) 4.24264 0.216506
\(385\) 0 0
\(386\) −4.24264 −0.215945
\(387\) −12.0000 −0.609994
\(388\) −4.24264 −0.215387
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −33.0000 −1.66675
\(393\) −6.00000 −0.302660
\(394\) 18.3848 0.926212
\(395\) 0 0
\(396\) 4.24264 0.213201
\(397\) 38.1838 1.91639 0.958194 0.286119i \(-0.0923652\pi\)
0.958194 + 0.286119i \(0.0923652\pi\)
\(398\) 1.41421 0.0708881
\(399\) 36.0000 1.80225
\(400\) 0 0
\(401\) 12.7279 0.635602 0.317801 0.948157i \(-0.397056\pi\)
0.317801 + 0.948157i \(0.397056\pi\)
\(402\) 8.48528 0.423207
\(403\) 0 0
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 18.0000 0.893325
\(407\) −18.0000 −0.892227
\(408\) 0 0
\(409\) 30.0000 1.48340 0.741702 0.670729i \(-0.234019\pi\)
0.741702 + 0.670729i \(0.234019\pi\)
\(410\) 0 0
\(411\) 5.65685 0.279032
\(412\) 6.00000 0.295599
\(413\) 25.4558 1.25260
\(414\) 1.41421 0.0695048
\(415\) 0 0
\(416\) 0 0
\(417\) −14.0000 −0.685583
\(418\) −25.4558 −1.24509
\(419\) −21.2132 −1.03633 −0.518166 0.855280i \(-0.673385\pi\)
−0.518166 + 0.855280i \(0.673385\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 24.0416 1.17033
\(423\) −2.00000 −0.0972433
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 6.00000 0.290701
\(427\) 6.00000 0.290360
\(428\) 12.7279 0.615227
\(429\) 0 0
\(430\) 0 0
\(431\) −12.7279 −0.613082 −0.306541 0.951857i \(-0.599172\pi\)
−0.306541 + 0.951857i \(0.599172\pi\)
\(432\) −5.65685 −0.272166
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 6.00000 0.288009
\(435\) 0 0
\(436\) −9.89949 −0.474100
\(437\) 8.48528 0.405906
\(438\) 6.00000 0.286691
\(439\) 26.8701 1.28244 0.641219 0.767358i \(-0.278429\pi\)
0.641219 + 0.767358i \(0.278429\pi\)
\(440\) 0 0
\(441\) −11.0000 −0.523810
\(442\) 0 0
\(443\) 22.0000 1.04525 0.522626 0.852562i \(-0.324953\pi\)
0.522626 + 0.852562i \(0.324953\pi\)
\(444\) −6.00000 −0.284747
\(445\) 0 0
\(446\) 0 0
\(447\) 25.4558 1.20402
\(448\) 29.6985 1.40312
\(449\) 21.2132 1.00111 0.500556 0.865704i \(-0.333129\pi\)
0.500556 + 0.865704i \(0.333129\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) −12.7279 −0.598671
\(453\) −14.1421 −0.664455
\(454\) −21.2132 −0.995585
\(455\) 0 0
\(456\) −25.4558 −1.19208
\(457\) 6.00000 0.280668 0.140334 0.990104i \(-0.455182\pi\)
0.140334 + 0.990104i \(0.455182\pi\)
\(458\) 24.0000 1.12145
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) −25.4558 −1.18431
\(463\) −18.0000 −0.836531 −0.418265 0.908325i \(-0.637362\pi\)
−0.418265 + 0.908325i \(0.637362\pi\)
\(464\) −4.24264 −0.196960
\(465\) 0 0
\(466\) 7.07107 0.327561
\(467\) −28.0000 −1.29569 −0.647843 0.761774i \(-0.724329\pi\)
−0.647843 + 0.761774i \(0.724329\pi\)
\(468\) 0 0
\(469\) −25.4558 −1.17544
\(470\) 0 0
\(471\) −16.9706 −0.781962
\(472\) −18.0000 −0.828517
\(473\) 50.9117 2.34092
\(474\) 14.0000 0.643041
\(475\) 0 0
\(476\) 0 0
\(477\) −2.00000 −0.0915737
\(478\) 24.0000 1.09773
\(479\) −12.7279 −0.581554 −0.290777 0.956791i \(-0.593914\pi\)
−0.290777 + 0.956791i \(0.593914\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 26.8701 1.22390
\(483\) 8.48528 0.386094
\(484\) −7.00000 −0.318182
\(485\) 0 0
\(486\) −9.89949 −0.449050
\(487\) −4.24264 −0.192252 −0.0961262 0.995369i \(-0.530645\pi\)
−0.0961262 + 0.995369i \(0.530645\pi\)
\(488\) −4.24264 −0.192055
\(489\) −18.0000 −0.813988
\(490\) 0 0
\(491\) 6.00000 0.270776 0.135388 0.990793i \(-0.456772\pi\)
0.135388 + 0.990793i \(0.456772\pi\)
\(492\) −6.00000 −0.270501
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.41421 −0.0635001
\(497\) −18.0000 −0.807410
\(498\) 5.65685 0.253490
\(499\) −32.5269 −1.45610 −0.728052 0.685522i \(-0.759574\pi\)
−0.728052 + 0.685522i \(0.759574\pi\)
\(500\) 0 0
\(501\) 6.00000 0.268060
\(502\) 12.0000 0.535586
\(503\) −4.24264 −0.189170 −0.0945850 0.995517i \(-0.530152\pi\)
−0.0945850 + 0.995517i \(0.530152\pi\)
\(504\) 12.7279 0.566947
\(505\) 0 0
\(506\) −6.00000 −0.266733
\(507\) 18.3848 0.816497
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) −18.0000 −0.796273
\(512\) −11.0000 −0.486136
\(513\) −33.9411 −1.49854
\(514\) 14.0000 0.617514
\(515\) 0 0
\(516\) 16.9706 0.747087
\(517\) 8.48528 0.373182
\(518\) −18.0000 −0.790875
\(519\) −30.0000 −1.31685
\(520\) 0 0
\(521\) −12.7279 −0.557620 −0.278810 0.960346i \(-0.589940\pi\)
−0.278810 + 0.960346i \(0.589940\pi\)
\(522\) −4.24264 −0.185695
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) −4.24264 −0.185341
\(525\) 0 0
\(526\) −16.0000 −0.697633
\(527\) 0 0
\(528\) 6.00000 0.261116
\(529\) −21.0000 −0.913043
\(530\) 0 0
\(531\) −6.00000 −0.260378
\(532\) 25.4558 1.10365
\(533\) 0 0
\(534\) −8.48528 −0.367194
\(535\) 0 0
\(536\) 18.0000 0.777482
\(537\) −8.48528 −0.366167
\(538\) −4.24264 −0.182913
\(539\) 46.6690 2.01018
\(540\) 0 0
\(541\) −1.41421 −0.0608018 −0.0304009 0.999538i \(-0.509678\pi\)
−0.0304009 + 0.999538i \(0.509678\pi\)
\(542\) 24.0000 1.03089
\(543\) −22.0000 −0.944110
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12.7279 0.544207 0.272103 0.962268i \(-0.412281\pi\)
0.272103 + 0.962268i \(0.412281\pi\)
\(548\) 4.00000 0.170872
\(549\) −1.41421 −0.0603572
\(550\) 0 0
\(551\) −25.4558 −1.08446
\(552\) −6.00000 −0.255377
\(553\) −42.0000 −1.78602
\(554\) −29.6985 −1.26177
\(555\) 0 0
\(556\) −9.89949 −0.419832
\(557\) −32.0000 −1.35588 −0.677942 0.735116i \(-0.737128\pi\)
−0.677942 + 0.735116i \(0.737128\pi\)
\(558\) −1.41421 −0.0598684
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 24.0000 1.01238
\(563\) −28.0000 −1.18006 −0.590030 0.807382i \(-0.700884\pi\)
−0.590030 + 0.807382i \(0.700884\pi\)
\(564\) 2.82843 0.119098
\(565\) 0 0
\(566\) −12.7279 −0.534994
\(567\) −21.2132 −0.890871
\(568\) 12.7279 0.534052
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −32.5269 −1.36121 −0.680604 0.732651i \(-0.738283\pi\)
−0.680604 + 0.732651i \(0.738283\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −18.0000 −0.751305
\(575\) 0 0
\(576\) −7.00000 −0.291667
\(577\) −36.0000 −1.49870 −0.749350 0.662174i \(-0.769634\pi\)
−0.749350 + 0.662174i \(0.769634\pi\)
\(578\) 0 0
\(579\) 6.00000 0.249351
\(580\) 0 0
\(581\) −16.9706 −0.704058
\(582\) −6.00000 −0.248708
\(583\) 8.48528 0.351424
\(584\) 12.7279 0.526685
\(585\) 0 0
\(586\) 4.00000 0.165238
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) 15.5563 0.641533
\(589\) −8.48528 −0.349630
\(590\) 0 0
\(591\) −26.0000 −1.06950
\(592\) 4.24264 0.174371
\(593\) −2.00000 −0.0821302 −0.0410651 0.999156i \(-0.513075\pi\)
−0.0410651 + 0.999156i \(0.513075\pi\)
\(594\) 24.0000 0.984732
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) −2.00000 −0.0818546
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −41.0122 −1.67292 −0.836461 0.548026i \(-0.815379\pi\)
−0.836461 + 0.548026i \(0.815379\pi\)
\(602\) 50.9117 2.07501
\(603\) 6.00000 0.244339
\(604\) −10.0000 −0.406894
\(605\) 0 0
\(606\) 8.48528 0.344691
\(607\) −46.6690 −1.89424 −0.947119 0.320882i \(-0.896021\pi\)
−0.947119 + 0.320882i \(0.896021\pi\)
\(608\) −30.0000 −1.21666
\(609\) −25.4558 −1.03152
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −36.0000 −1.45403 −0.727013 0.686624i \(-0.759092\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 18.0000 0.726421
\(615\) 0 0
\(616\) −54.0000 −2.17572
\(617\) 21.2132 0.854011 0.427006 0.904249i \(-0.359568\pi\)
0.427006 + 0.904249i \(0.359568\pi\)
\(618\) 8.48528 0.341328
\(619\) −18.3848 −0.738947 −0.369473 0.929241i \(-0.620462\pi\)
−0.369473 + 0.929241i \(0.620462\pi\)
\(620\) 0 0
\(621\) −8.00000 −0.321029
\(622\) 4.24264 0.170114
\(623\) 25.4558 1.01987
\(624\) 0 0
\(625\) 0 0
\(626\) 4.24264 0.169570
\(627\) 36.0000 1.43770
\(628\) −12.0000 −0.478852
\(629\) 0 0
\(630\) 0 0
\(631\) 34.0000 1.35352 0.676759 0.736204i \(-0.263384\pi\)
0.676759 + 0.736204i \(0.263384\pi\)
\(632\) 29.6985 1.18134
\(633\) −34.0000 −1.35138
\(634\) 21.2132 0.842484
\(635\) 0 0
\(636\) 2.82843 0.112154
\(637\) 0 0
\(638\) 18.0000 0.712627
\(639\) 4.24264 0.167836
\(640\) 0 0
\(641\) 12.7279 0.502723 0.251361 0.967893i \(-0.419122\pi\)
0.251361 + 0.967893i \(0.419122\pi\)
\(642\) 18.0000 0.710403
\(643\) −12.7279 −0.501940 −0.250970 0.967995i \(-0.580750\pi\)
−0.250970 + 0.967995i \(0.580750\pi\)
\(644\) 6.00000 0.236433
\(645\) 0 0
\(646\) 0 0
\(647\) 46.0000 1.80845 0.904223 0.427060i \(-0.140451\pi\)
0.904223 + 0.427060i \(0.140451\pi\)
\(648\) 15.0000 0.589256
\(649\) 25.4558 0.999229
\(650\) 0 0
\(651\) −8.48528 −0.332564
\(652\) −12.7279 −0.498464
\(653\) −29.6985 −1.16219 −0.581096 0.813835i \(-0.697376\pi\)
−0.581096 + 0.813835i \(0.697376\pi\)
\(654\) −14.0000 −0.547443
\(655\) 0 0
\(656\) 4.24264 0.165647
\(657\) 4.24264 0.165521
\(658\) 8.48528 0.330791
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) −36.0000 −1.40024 −0.700119 0.714026i \(-0.746870\pi\)
−0.700119 + 0.714026i \(0.746870\pi\)
\(662\) 18.0000 0.699590
\(663\) 0 0
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) 4.24264 0.164399
\(667\) −6.00000 −0.232321
\(668\) 4.24264 0.164153
\(669\) 0 0
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) −30.0000 −1.15728
\(673\) 21.2132 0.817709 0.408854 0.912600i \(-0.365928\pi\)
0.408854 + 0.912600i \(0.365928\pi\)
\(674\) −21.2132 −0.817102
\(675\) 0 0
\(676\) 13.0000 0.500000
\(677\) −15.5563 −0.597879 −0.298940 0.954272i \(-0.596633\pi\)
−0.298940 + 0.954272i \(0.596633\pi\)
\(678\) −18.0000 −0.691286
\(679\) 18.0000 0.690777
\(680\) 0 0
\(681\) 30.0000 1.14960
\(682\) 6.00000 0.229752
\(683\) 21.2132 0.811701 0.405850 0.913940i \(-0.366975\pi\)
0.405850 + 0.913940i \(0.366975\pi\)
\(684\) −6.00000 −0.229416
\(685\) 0 0
\(686\) 16.9706 0.647939
\(687\) −33.9411 −1.29493
\(688\) −12.0000 −0.457496
\(689\) 0 0
\(690\) 0 0
\(691\) 26.8701 1.02219 0.511093 0.859526i \(-0.329241\pi\)
0.511093 + 0.859526i \(0.329241\pi\)
\(692\) −21.2132 −0.806405
\(693\) −18.0000 −0.683763
\(694\) −12.7279 −0.483145
\(695\) 0 0
\(696\) 18.0000 0.682288
\(697\) 0 0
\(698\) 28.0000 1.05982
\(699\) −10.0000 −0.378235
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) 25.4558 0.960085
\(704\) 29.6985 1.11930
\(705\) 0 0
\(706\) −16.0000 −0.602168
\(707\) −25.4558 −0.957366
\(708\) 8.48528 0.318896
\(709\) −7.07107 −0.265560 −0.132780 0.991146i \(-0.542390\pi\)
−0.132780 + 0.991146i \(0.542390\pi\)
\(710\) 0 0
\(711\) 9.89949 0.371260
\(712\) −18.0000 −0.674579
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) 0 0
\(716\) −6.00000 −0.224231
\(717\) −33.9411 −1.26755
\(718\) 30.0000 1.11959
\(719\) 29.6985 1.10757 0.553783 0.832661i \(-0.313184\pi\)
0.553783 + 0.832661i \(0.313184\pi\)
\(720\) 0 0
\(721\) −25.4558 −0.948025
\(722\) 17.0000 0.632674
\(723\) −38.0000 −1.41324
\(724\) −15.5563 −0.578147
\(725\) 0 0
\(726\) −9.89949 −0.367405
\(727\) 18.0000 0.667583 0.333792 0.942647i \(-0.391672\pi\)
0.333792 + 0.942647i \(0.391672\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) 0 0
\(732\) 2.00000 0.0739221
\(733\) 42.0000 1.55131 0.775653 0.631160i \(-0.217421\pi\)
0.775653 + 0.631160i \(0.217421\pi\)
\(734\) 4.24264 0.156599
\(735\) 0 0
\(736\) −7.07107 −0.260643
\(737\) −25.4558 −0.937678
\(738\) 4.24264 0.156174
\(739\) −34.0000 −1.25071 −0.625355 0.780340i \(-0.715046\pi\)
−0.625355 + 0.780340i \(0.715046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 8.48528 0.311504
\(743\) 12.7279 0.466942 0.233471 0.972364i \(-0.424992\pi\)
0.233471 + 0.972364i \(0.424992\pi\)
\(744\) 6.00000 0.219971
\(745\) 0 0
\(746\) −24.0000 −0.878702
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) −54.0000 −1.97312
\(750\) 0 0
\(751\) −26.8701 −0.980502 −0.490251 0.871581i \(-0.663095\pi\)
−0.490251 + 0.871581i \(0.663095\pi\)
\(752\) −2.00000 −0.0729325
\(753\) −16.9706 −0.618442
\(754\) 0 0
\(755\) 0 0
\(756\) −24.0000 −0.872872
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) −15.5563 −0.565032
\(759\) 8.48528 0.307996
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) 42.0000 1.52050
\(764\) 0 0
\(765\) 0 0
\(766\) 16.0000 0.578103
\(767\) 0 0
\(768\) 24.0416 0.867528
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) −19.7990 −0.713043
\(772\) 4.24264 0.152696
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) −12.0000 −0.431331
\(775\) 0 0
\(776\) −12.7279 −0.456906
\(777\) 25.4558 0.913223
\(778\) 0 0
\(779\) 25.4558 0.912050
\(780\) 0 0
\(781\) −18.0000 −0.644091
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) −11.0000 −0.392857
\(785\) 0 0
\(786\) −6.00000 −0.214013
\(787\) 38.1838 1.36110 0.680552 0.732700i \(-0.261740\pi\)
0.680552 + 0.732700i \(0.261740\pi\)
\(788\) −18.3848 −0.654931
\(789\) 22.6274 0.805557
\(790\) 0 0
\(791\) 54.0000 1.92002
\(792\) 12.7279 0.452267
\(793\) 0 0
\(794\) 38.1838 1.35509
\(795\) 0 0
\(796\) −1.41421 −0.0501255
\(797\) −34.0000 −1.20434 −0.602171 0.798367i \(-0.705697\pi\)
−0.602171 + 0.798367i \(0.705697\pi\)
\(798\) 36.0000 1.27439
\(799\) 0 0
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 12.7279 0.449439
\(803\) −18.0000 −0.635206
\(804\) −8.48528 −0.299253
\(805\) 0 0
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 18.0000 0.633238
\(809\) 4.24264 0.149163 0.0745817 0.997215i \(-0.476238\pi\)
0.0745817 + 0.997215i \(0.476238\pi\)
\(810\) 0 0
\(811\) −1.41421 −0.0496598 −0.0248299 0.999692i \(-0.507904\pi\)
−0.0248299 + 0.999692i \(0.507904\pi\)
\(812\) −18.0000 −0.631676
\(813\) −33.9411 −1.19037
\(814\) −18.0000 −0.630900
\(815\) 0 0
\(816\) 0 0
\(817\) −72.0000 −2.51896
\(818\) 30.0000 1.04893
\(819\) 0 0
\(820\) 0 0
\(821\) −21.2132 −0.740346 −0.370173 0.928963i \(-0.620702\pi\)
−0.370173 + 0.928963i \(0.620702\pi\)
\(822\) 5.65685 0.197305
\(823\) −55.1543 −1.92256 −0.961280 0.275575i \(-0.911132\pi\)
−0.961280 + 0.275575i \(0.911132\pi\)
\(824\) 18.0000 0.627060
\(825\) 0 0
\(826\) 25.4558 0.885722
\(827\) 18.3848 0.639301 0.319651 0.947535i \(-0.396434\pi\)
0.319651 + 0.947535i \(0.396434\pi\)
\(828\) −1.41421 −0.0491473
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) 42.0000 1.45696
\(832\) 0 0
\(833\) 0 0
\(834\) −14.0000 −0.484780
\(835\) 0 0
\(836\) 25.4558 0.880409
\(837\) 8.00000 0.276520
\(838\) −21.2132 −0.732798
\(839\) −4.24264 −0.146472 −0.0732361 0.997315i \(-0.523333\pi\)
−0.0732361 + 0.997315i \(0.523333\pi\)
\(840\) 0 0
\(841\) −11.0000 −0.379310
\(842\) 6.00000 0.206774
\(843\) −33.9411 −1.16899
\(844\) −24.0416 −0.827547
\(845\) 0 0
\(846\) −2.00000 −0.0687614
\(847\) 29.6985 1.02045
\(848\) −2.00000 −0.0686803
\(849\) 18.0000 0.617758
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) −6.00000 −0.205557
\(853\) 4.24264 0.145265 0.0726326 0.997359i \(-0.476860\pi\)
0.0726326 + 0.997359i \(0.476860\pi\)
\(854\) 6.00000 0.205316
\(855\) 0 0
\(856\) 38.1838 1.30509
\(857\) −15.5563 −0.531395 −0.265697 0.964056i \(-0.585602\pi\)
−0.265697 + 0.964056i \(0.585602\pi\)
\(858\) 0 0
\(859\) 30.0000 1.02359 0.511793 0.859109i \(-0.328981\pi\)
0.511793 + 0.859109i \(0.328981\pi\)
\(860\) 0 0
\(861\) 25.4558 0.867533
\(862\) −12.7279 −0.433515
\(863\) 38.0000 1.29354 0.646768 0.762687i \(-0.276120\pi\)
0.646768 + 0.762687i \(0.276120\pi\)
\(864\) 28.2843 0.962250
\(865\) 0 0
\(866\) 30.0000 1.01944
\(867\) 0 0
\(868\) −6.00000 −0.203653
\(869\) −42.0000 −1.42475
\(870\) 0 0
\(871\) 0 0
\(872\) −29.6985 −1.00572
\(873\) −4.24264 −0.143592
\(874\) 8.48528 0.287019
\(875\) 0 0
\(876\) −6.00000 −0.202721
\(877\) −38.1838 −1.28937 −0.644687 0.764447i \(-0.723012\pi\)
−0.644687 + 0.764447i \(0.723012\pi\)
\(878\) 26.8701 0.906821
\(879\) −5.65685 −0.190801
\(880\) 0 0
\(881\) 4.24264 0.142938 0.0714691 0.997443i \(-0.477231\pi\)
0.0714691 + 0.997443i \(0.477231\pi\)
\(882\) −11.0000 −0.370389
\(883\) 6.00000 0.201916 0.100958 0.994891i \(-0.467809\pi\)
0.100958 + 0.994891i \(0.467809\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 22.0000 0.739104
\(887\) 24.0416 0.807239 0.403619 0.914927i \(-0.367752\pi\)
0.403619 + 0.914927i \(0.367752\pi\)
\(888\) −18.0000 −0.604040
\(889\) 0 0
\(890\) 0 0
\(891\) −21.2132 −0.710669
\(892\) 0 0
\(893\) −12.0000 −0.401565
\(894\) 25.4558 0.851371
\(895\) 0 0
\(896\) −12.7279 −0.425210
\(897\) 0 0
\(898\) 21.2132 0.707894
\(899\) 6.00000 0.200111
\(900\) 0 0
\(901\) 0 0
\(902\) −18.0000 −0.599334
\(903\) −72.0000 −2.39601
\(904\) −38.1838 −1.26997
\(905\) 0 0
\(906\) −14.1421 −0.469841
\(907\) −21.2132 −0.704373 −0.352186 0.935930i \(-0.614562\pi\)
−0.352186 + 0.935930i \(0.614562\pi\)
\(908\) 21.2132 0.703985
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 29.6985 0.983955 0.491977 0.870608i \(-0.336274\pi\)
0.491977 + 0.870608i \(0.336274\pi\)
\(912\) −8.48528 −0.280976
\(913\) −16.9706 −0.561644
\(914\) 6.00000 0.198462
\(915\) 0 0
\(916\) −24.0000 −0.792982
\(917\) 18.0000 0.594412
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −25.4558 −0.838799
\(922\) 12.0000 0.395199
\(923\) 0 0
\(924\) 25.4558 0.837436
\(925\) 0 0
\(926\) −18.0000 −0.591517
\(927\) 6.00000 0.197066
\(928\) 21.2132 0.696358
\(929\) 29.6985 0.974376 0.487188 0.873297i \(-0.338023\pi\)
0.487188 + 0.873297i \(0.338023\pi\)
\(930\) 0 0
\(931\) −66.0000 −2.16306
\(932\) −7.07107 −0.231621
\(933\) −6.00000 −0.196431
\(934\) −28.0000 −0.916188
\(935\) 0 0
\(936\) 0 0
\(937\) 18.0000 0.588034 0.294017 0.955800i \(-0.405008\pi\)
0.294017 + 0.955800i \(0.405008\pi\)
\(938\) −25.4558 −0.831163
\(939\) −6.00000 −0.195803
\(940\) 0 0
\(941\) 21.2132 0.691531 0.345765 0.938321i \(-0.387619\pi\)
0.345765 + 0.938321i \(0.387619\pi\)
\(942\) −16.9706 −0.552931
\(943\) 6.00000 0.195387
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 50.9117 1.65528
\(947\) 15.5563 0.505513 0.252757 0.967530i \(-0.418663\pi\)
0.252757 + 0.967530i \(0.418663\pi\)
\(948\) −14.0000 −0.454699
\(949\) 0 0
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) 4.00000 0.129573 0.0647864 0.997899i \(-0.479363\pi\)
0.0647864 + 0.997899i \(0.479363\pi\)
\(954\) −2.00000 −0.0647524
\(955\) 0 0
\(956\) −24.0000 −0.776215
\(957\) −25.4558 −0.822871
\(958\) −12.7279 −0.411220
\(959\) −16.9706 −0.548008
\(960\) 0 0
\(961\) −29.0000 −0.935484
\(962\) 0 0
\(963\) 12.7279 0.410152
\(964\) −26.8701 −0.865426
\(965\) 0 0
\(966\) 8.48528 0.273009
\(967\) −24.0000 −0.771788 −0.385894 0.922543i \(-0.626107\pi\)
−0.385894 + 0.922543i \(0.626107\pi\)
\(968\) −21.0000 −0.674966
\(969\) 0 0
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 9.89949 0.317526
\(973\) 42.0000 1.34646
\(974\) −4.24264 −0.135943
\(975\) 0 0
\(976\) −1.41421 −0.0452679
\(977\) 46.0000 1.47167 0.735835 0.677161i \(-0.236790\pi\)
0.735835 + 0.677161i \(0.236790\pi\)
\(978\) −18.0000 −0.575577
\(979\) 25.4558 0.813572
\(980\) 0 0
\(981\) −9.89949 −0.316067
\(982\) 6.00000 0.191468
\(983\) −29.6985 −0.947235 −0.473617 0.880731i \(-0.657052\pi\)
−0.473617 + 0.880731i \(0.657052\pi\)
\(984\) −18.0000 −0.573819
\(985\) 0 0
\(986\) 0 0
\(987\) −12.0000 −0.381964
\(988\) 0 0
\(989\) −16.9706 −0.539633
\(990\) 0 0
\(991\) −18.3848 −0.584012 −0.292006 0.956417i \(-0.594323\pi\)
−0.292006 + 0.956417i \(0.594323\pi\)
\(992\) 7.07107 0.224507
\(993\) −25.4558 −0.807817
\(994\) −18.0000 −0.570925
\(995\) 0 0
\(996\) −5.65685 −0.179244
\(997\) 4.24264 0.134366 0.0671829 0.997741i \(-0.478599\pi\)
0.0671829 + 0.997741i \(0.478599\pi\)
\(998\) −32.5269 −1.02962
\(999\) −24.0000 −0.759326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.p.1.1 2
5.2 odd 4 1445.2.b.a.579.4 4
5.3 odd 4 1445.2.b.a.579.1 4
5.4 even 2 7225.2.a.i.1.2 2
17.8 even 8 425.2.e.b.251.1 2
17.15 even 8 425.2.e.b.276.1 2
17.16 even 2 inner 7225.2.a.p.1.2 2
85.8 odd 8 85.2.j.a.64.1 yes 2
85.32 odd 8 85.2.j.a.4.1 2
85.33 odd 4 1445.2.b.a.579.2 4
85.42 odd 8 85.2.j.b.64.1 yes 2
85.49 even 8 425.2.e.a.276.1 2
85.59 even 8 425.2.e.a.251.1 2
85.67 odd 4 1445.2.b.a.579.3 4
85.83 odd 8 85.2.j.b.4.1 yes 2
85.84 even 2 7225.2.a.i.1.1 2
255.8 even 8 765.2.t.b.64.1 2
255.32 even 8 765.2.t.b.514.1 2
255.83 even 8 765.2.t.a.514.1 2
255.212 even 8 765.2.t.a.64.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.j.a.4.1 2 85.32 odd 8
85.2.j.a.64.1 yes 2 85.8 odd 8
85.2.j.b.4.1 yes 2 85.83 odd 8
85.2.j.b.64.1 yes 2 85.42 odd 8
425.2.e.a.251.1 2 85.59 even 8
425.2.e.a.276.1 2 85.49 even 8
425.2.e.b.251.1 2 17.8 even 8
425.2.e.b.276.1 2 17.15 even 8
765.2.t.a.64.1 2 255.212 even 8
765.2.t.a.514.1 2 255.83 even 8
765.2.t.b.64.1 2 255.8 even 8
765.2.t.b.514.1 2 255.32 even 8
1445.2.b.a.579.1 4 5.3 odd 4
1445.2.b.a.579.2 4 85.33 odd 4
1445.2.b.a.579.3 4 85.67 odd 4
1445.2.b.a.579.4 4 5.2 odd 4
7225.2.a.i.1.1 2 85.84 even 2
7225.2.a.i.1.2 2 5.4 even 2
7225.2.a.p.1.1 2 1.1 even 1 trivial
7225.2.a.p.1.2 2 17.16 even 2 inner