Properties

Label 2-862-1.1-c1-0-19
Degree $2$
Conductor $862$
Sign $-1$
Analytic cond. $6.88310$
Root an. cond. $2.62356$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 1.74·3-s + 4-s + 2.20·5-s + 1.74·6-s + 0.156·7-s − 8-s + 0.0472·9-s − 2.20·10-s + 0.652·11-s − 1.74·12-s − 6.50·13-s − 0.156·14-s − 3.84·15-s + 16-s − 0.464·17-s − 0.0472·18-s + 5.83·19-s + 2.20·20-s − 0.273·21-s − 0.652·22-s − 8.89·23-s + 1.74·24-s − 0.138·25-s + 6.50·26-s + 5.15·27-s + 0.156·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.00·3-s + 0.5·4-s + 0.986·5-s + 0.712·6-s + 0.0592·7-s − 0.353·8-s + 0.0157·9-s − 0.697·10-s + 0.196·11-s − 0.503·12-s − 1.80·13-s − 0.0418·14-s − 0.993·15-s + 0.250·16-s − 0.112·17-s − 0.0111·18-s + 1.33·19-s + 0.493·20-s − 0.0596·21-s − 0.139·22-s − 1.85·23-s + 0.356·24-s − 0.0277·25-s + 1.27·26-s + 0.991·27-s + 0.0296·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 862 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(862\)    =    \(2 \cdot 431\)
Sign: $-1$
Analytic conductor: \(6.88310\)
Root analytic conductor: \(2.62356\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 862,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
431 \( 1 + T \)
good3 \( 1 + 1.74T + 3T^{2} \)
5 \( 1 - 2.20T + 5T^{2} \)
7 \( 1 - 0.156T + 7T^{2} \)
11 \( 1 - 0.652T + 11T^{2} \)
13 \( 1 + 6.50T + 13T^{2} \)
17 \( 1 + 0.464T + 17T^{2} \)
19 \( 1 - 5.83T + 19T^{2} \)
23 \( 1 + 8.89T + 23T^{2} \)
29 \( 1 - 0.0633T + 29T^{2} \)
31 \( 1 - 1.92T + 31T^{2} \)
37 \( 1 + 2.74T + 37T^{2} \)
41 \( 1 - 0.948T + 41T^{2} \)
43 \( 1 + 5.66T + 43T^{2} \)
47 \( 1 - 13.3T + 47T^{2} \)
53 \( 1 + 12.5T + 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 + 0.890T + 61T^{2} \)
67 \( 1 + 11.0T + 67T^{2} \)
71 \( 1 + 0.438T + 71T^{2} \)
73 \( 1 - 3.32T + 73T^{2} \)
79 \( 1 + 6.31T + 79T^{2} \)
83 \( 1 + 10.4T + 83T^{2} \)
89 \( 1 + 15.7T + 89T^{2} \)
97 \( 1 + 2.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.881372789015223040305866055191, −9.207747246209854060277454102041, −7.973780224038943052407613768862, −7.16453963526854979932401062916, −6.16498129826795321633908221129, −5.58078163031941193791032685974, −4.65568393819433903031570293196, −2.85688414970249145040367873531, −1.69916984989903885174403769138, 0, 1.69916984989903885174403769138, 2.85688414970249145040367873531, 4.65568393819433903031570293196, 5.58078163031941193791032685974, 6.16498129826795321633908221129, 7.16453963526854979932401062916, 7.973780224038943052407613768862, 9.207747246209854060277454102041, 9.881372789015223040305866055191

Graph of the $Z$-function along the critical line