L(s) = 1 | − 2-s − 1.74·3-s + 4-s + 2.20·5-s + 1.74·6-s + 0.156·7-s − 8-s + 0.0472·9-s − 2.20·10-s + 0.652·11-s − 1.74·12-s − 6.50·13-s − 0.156·14-s − 3.84·15-s + 16-s − 0.464·17-s − 0.0472·18-s + 5.83·19-s + 2.20·20-s − 0.273·21-s − 0.652·22-s − 8.89·23-s + 1.74·24-s − 0.138·25-s + 6.50·26-s + 5.15·27-s + 0.156·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.00·3-s + 0.5·4-s + 0.986·5-s + 0.712·6-s + 0.0592·7-s − 0.353·8-s + 0.0157·9-s − 0.697·10-s + 0.196·11-s − 0.503·12-s − 1.80·13-s − 0.0418·14-s − 0.993·15-s + 0.250·16-s − 0.112·17-s − 0.0111·18-s + 1.33·19-s + 0.493·20-s − 0.0596·21-s − 0.139·22-s − 1.85·23-s + 0.356·24-s − 0.0277·25-s + 1.27·26-s + 0.991·27-s + 0.0296·28-s + ⋯ |
Λ(s)=(=(862s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(862s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 431 | 1+T |
good | 3 | 1+1.74T+3T2 |
| 5 | 1−2.20T+5T2 |
| 7 | 1−0.156T+7T2 |
| 11 | 1−0.652T+11T2 |
| 13 | 1+6.50T+13T2 |
| 17 | 1+0.464T+17T2 |
| 19 | 1−5.83T+19T2 |
| 23 | 1+8.89T+23T2 |
| 29 | 1−0.0633T+29T2 |
| 31 | 1−1.92T+31T2 |
| 37 | 1+2.74T+37T2 |
| 41 | 1−0.948T+41T2 |
| 43 | 1+5.66T+43T2 |
| 47 | 1−13.3T+47T2 |
| 53 | 1+12.5T+53T2 |
| 59 | 1+11.7T+59T2 |
| 61 | 1+0.890T+61T2 |
| 67 | 1+11.0T+67T2 |
| 71 | 1+0.438T+71T2 |
| 73 | 1−3.32T+73T2 |
| 79 | 1+6.31T+79T2 |
| 83 | 1+10.4T+83T2 |
| 89 | 1+15.7T+89T2 |
| 97 | 1+2.07T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.881372789015223040305866055191, −9.207747246209854060277454102041, −7.973780224038943052407613768862, −7.16453963526854979932401062916, −6.16498129826795321633908221129, −5.58078163031941193791032685974, −4.65568393819433903031570293196, −2.85688414970249145040367873531, −1.69916984989903885174403769138, 0,
1.69916984989903885174403769138, 2.85688414970249145040367873531, 4.65568393819433903031570293196, 5.58078163031941193791032685974, 6.16498129826795321633908221129, 7.16453963526854979932401062916, 7.973780224038943052407613768862, 9.207747246209854060277454102041, 9.881372789015223040305866055191