L(s) = 1 | + (−0.109 + 0.994i)2-s + (−2.97 + 0.437i)3-s + (−0.976 − 0.217i)4-s + (0.296 − 0.0129i)5-s + (−0.109 − 3.00i)6-s + (−1.62 − 2.34i)7-s + (0.322 − 0.946i)8-s + (5.77 − 1.73i)9-s + (−0.0194 + 0.295i)10-s + (3.35 + 5.14i)11-s + (2.99 + 0.219i)12-s + (0.631 + 0.694i)13-s + (2.51 − 1.36i)14-s + (−0.874 + 0.168i)15-s + (0.905 + 0.424i)16-s + (0.141 − 2.76i)17-s + ⋯ |
L(s) = 1 | + (−0.0773 + 0.702i)2-s + (−1.71 + 0.252i)3-s + (−0.488 − 0.108i)4-s + (0.132 − 0.00580i)5-s + (−0.0448 − 1.22i)6-s + (−0.615 − 0.887i)7-s + (0.114 − 0.334i)8-s + (1.92 − 0.579i)9-s + (−0.00615 + 0.0935i)10-s + (1.01 + 1.55i)11-s + (0.865 + 0.0633i)12-s + (0.175 + 0.192i)13-s + (0.671 − 0.363i)14-s + (−0.225 + 0.0434i)15-s + (0.226 + 0.106i)16-s + (0.0343 − 0.671i)17-s + ⋯ |
Λ(s)=(=(862s/2ΓC(s)L(s)(−0.961+0.273i)Λ(2−s)
Λ(s)=(=(862s/2ΓC(s+1/2)L(s)(−0.961+0.273i)Λ(1−s)
Degree: |
2 |
Conductor: |
862
= 2⋅431
|
Sign: |
−0.961+0.273i
|
Analytic conductor: |
6.88310 |
Root analytic conductor: |
2.62356 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ862(441,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 862, ( :1/2), −0.961+0.273i)
|
Particular Values
L(1) |
≈ |
0.0374466−0.268185i |
L(21) |
≈ |
0.0374466−0.268185i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.109−0.994i)T |
| 431 | 1+(−8.62+18.8i)T |
good | 3 | 1+(2.97−0.437i)T+(2.87−0.864i)T2 |
| 5 | 1+(−0.296+0.0129i)T+(4.98−0.437i)T2 |
| 7 | 1+(1.62+2.34i)T+(−2.45+6.55i)T2 |
| 11 | 1+(−3.35−5.14i)T+(−4.44+10.0i)T2 |
| 13 | 1+(−0.631−0.694i)T+(−1.23+12.9i)T2 |
| 17 | 1+(−0.141+2.76i)T+(−16.9−1.73i)T2 |
| 19 | 1+(−1.09−3.94i)T+(−16.2+9.77i)T2 |
| 23 | 1+(4.48+1.06i)T+(20.5+10.3i)T2 |
| 29 | 1+(−4.13−1.79i)T+(19.8+21.1i)T2 |
| 31 | 1+(1.66+0.609i)T+(23.6+20.0i)T2 |
| 37 | 1+(5.02+4.76i)T+(1.89+36.9i)T2 |
| 41 | 1+(−5.00+5.34i)T+(−2.69−40.9i)T2 |
| 43 | 1+(−0.447−6.78i)T+(−42.6+5.63i)T2 |
| 47 | 1+(3.45−4.83i)T+(−15.1−44.4i)T2 |
| 53 | 1+(0.243−0.329i)T+(−15.6−50.6i)T2 |
| 59 | 1+(6.58+2.97i)T+(39.0+44.2i)T2 |
| 61 | 1+(8.14−7.51i)T+(4.89−60.8i)T2 |
| 67 | 1+(1.14−2.40i)T+(−42.1−52.1i)T2 |
| 71 | 1+(−0.0423−5.79i)T+(−70.9+1.03i)T2 |
| 73 | 1+(−2.36+1.51i)T+(30.5−66.3i)T2 |
| 79 | 1+(11.9−0.348i)T+(78.8−4.61i)T2 |
| 83 | 1+(9.34+4.89i)T+(47.3+68.2i)T2 |
| 89 | 1+(15.3−7.48i)T+(54.9−70.0i)T2 |
| 97 | 1+(−4.23−14.4i)T+(−81.6+52.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.38254013821199732943633078482, −9.918190384134668884961633005661, −9.278483621684623925729581974499, −7.62220626545836850385709803647, −6.98020255529590939010809384289, −6.33430604089525718663833159437, −5.57006392396467366968726165468, −4.45424493797456560357096498030, −3.97415671160711269718192477600, −1.39301200231786700591668220429,
0.18886724188691429136947675335, 1.52392287741636997127046471332, 3.15212721396241373883272314495, 4.30565333943694683830348553896, 5.58629104157893489621421478335, 5.99956300500990688879327338247, 6.71591557793335667205666693350, 8.172110103270191765504596260896, 9.078140655760143259621691814568, 9.943946334909771852643666130051