L(s) = 1 | + (0.109 − 0.994i)2-s + (2.20 − 0.323i)3-s + (−0.976 − 0.217i)4-s + (−2.19 + 0.0964i)5-s + (−0.0812 − 2.22i)6-s + (2.45 + 3.54i)7-s + (−0.322 + 0.946i)8-s + (1.86 − 0.562i)9-s + (−0.144 + 2.19i)10-s + (1.87 + 2.88i)11-s + (−2.21 − 0.162i)12-s + (1.27 + 1.40i)13-s + (3.79 − 2.05i)14-s + (−4.81 + 0.925i)15-s + (0.905 + 0.424i)16-s + (0.0570 − 1.11i)17-s + ⋯ |
L(s) = 1 | + (0.0773 − 0.702i)2-s + (1.27 − 0.187i)3-s + (−0.488 − 0.108i)4-s + (−0.983 + 0.0431i)5-s + (−0.0331 − 0.907i)6-s + (0.928 + 1.33i)7-s + (−0.114 + 0.334i)8-s + (0.622 − 0.187i)9-s + (−0.0457 + 0.694i)10-s + (0.566 + 0.870i)11-s + (−0.640 − 0.0468i)12-s + (0.354 + 0.390i)13-s + (1.01 − 0.549i)14-s + (−1.24 + 0.238i)15-s + (0.226 + 0.106i)16-s + (0.0138 − 0.270i)17-s + ⋯ |
Λ(s)=(=(862s/2ΓC(s)L(s)(0.999+0.0206i)Λ(2−s)
Λ(s)=(=(862s/2ΓC(s+1/2)L(s)(0.999+0.0206i)Λ(1−s)
Degree: |
2 |
Conductor: |
862
= 2⋅431
|
Sign: |
0.999+0.0206i
|
Analytic conductor: |
6.88310 |
Root analytic conductor: |
2.62356 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ862(441,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 862, ( :1/2), 0.999+0.0206i)
|
Particular Values
L(1) |
≈ |
2.18184−0.0225836i |
L(21) |
≈ |
2.18184−0.0225836i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.109+0.994i)T |
| 431 | 1+(−13.7+15.5i)T |
good | 3 | 1+(−2.20+0.323i)T+(2.87−0.864i)T2 |
| 5 | 1+(2.19−0.0964i)T+(4.98−0.437i)T2 |
| 7 | 1+(−2.45−3.54i)T+(−2.45+6.55i)T2 |
| 11 | 1+(−1.87−2.88i)T+(−4.44+10.0i)T2 |
| 13 | 1+(−1.27−1.40i)T+(−1.23+12.9i)T2 |
| 17 | 1+(−0.0570+1.11i)T+(−16.9−1.73i)T2 |
| 19 | 1+(−0.412−1.48i)T+(−16.2+9.77i)T2 |
| 23 | 1+(−0.609−0.145i)T+(20.5+10.3i)T2 |
| 29 | 1+(−3.86−1.67i)T+(19.8+21.1i)T2 |
| 31 | 1+(0.248+0.0907i)T+(23.6+20.0i)T2 |
| 37 | 1+(−1.81−1.72i)T+(1.89+36.9i)T2 |
| 41 | 1+(−1.38+1.47i)T+(−2.69−40.9i)T2 |
| 43 | 1+(0.250+3.80i)T+(−42.6+5.63i)T2 |
| 47 | 1+(−7.35+10.2i)T+(−15.1−44.4i)T2 |
| 53 | 1+(−3.48+4.72i)T+(−15.6−50.6i)T2 |
| 59 | 1+(−2.74−1.23i)T+(39.0+44.2i)T2 |
| 61 | 1+(−3.05+2.81i)T+(4.89−60.8i)T2 |
| 67 | 1+(1.33−2.80i)T+(−42.1−52.1i)T2 |
| 71 | 1+(0.0866+11.8i)T+(−70.9+1.03i)T2 |
| 73 | 1+(3.62−2.32i)T+(30.5−66.3i)T2 |
| 79 | 1+(10.4−0.304i)T+(78.8−4.61i)T2 |
| 83 | 1+(11.9+6.25i)T+(47.3+68.2i)T2 |
| 89 | 1+(4.05−1.97i)T+(54.9−70.0i)T2 |
| 97 | 1+(−3.31−11.3i)T+(−81.6+52.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.03687319752332582494709177188, −9.048298009036441023443478585141, −8.636142767310613746454519791740, −7.945803548304898950797989760164, −7.05539652791007699162961321122, −5.54395371024328923137812986308, −4.45328039565324322943335318954, −3.61501420949203624633479029325, −2.51928379303508200857770383333, −1.70711338015244271834232614194,
1.00302175590974167228733510604, 3.02041731811293387111646769449, 4.00943454782589983993893532411, 4.37223103737386740155331964742, 5.87452623465266255596035306259, 7.13290597127850068539958232179, 7.78317094878769698629009082520, 8.307923238028414882760125368184, 8.916504197213773294515848922469, 10.01635517598144364027225620201