Properties

Label 2-8664-1.1-c1-0-134
Degree $2$
Conductor $8664$
Sign $-1$
Analytic cond. $69.1823$
Root an. cond. $8.31759$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 0.725·5-s − 3.98·7-s + 9-s + 0.244·11-s + 4.54·13-s + 0.725·15-s − 5.80·17-s − 3.98·21-s − 0.414·23-s − 4.47·25-s + 27-s − 6.43·29-s + 3.70·31-s + 0.244·33-s − 2.89·35-s + 6.12·37-s + 4.54·39-s + 9.22·41-s + 4.21·43-s + 0.725·45-s + 5.09·47-s + 8.86·49-s − 5.80·51-s + 1.12·53-s + 0.177·55-s − 1.50·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.324·5-s − 1.50·7-s + 0.333·9-s + 0.0736·11-s + 1.26·13-s + 0.187·15-s − 1.40·17-s − 0.869·21-s − 0.0864·23-s − 0.894·25-s + 0.192·27-s − 1.19·29-s + 0.666·31-s + 0.0425·33-s − 0.488·35-s + 1.00·37-s + 0.728·39-s + 1.44·41-s + 0.643·43-s + 0.108·45-s + 0.742·47-s + 1.26·49-s − 0.812·51-s + 0.154·53-s + 0.0238·55-s − 0.195·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8664 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8664\)    =    \(2^{3} \cdot 3 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(69.1823\)
Root analytic conductor: \(8.31759\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8664,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 \)
good5 \( 1 - 0.725T + 5T^{2} \)
7 \( 1 + 3.98T + 7T^{2} \)
11 \( 1 - 0.244T + 11T^{2} \)
13 \( 1 - 4.54T + 13T^{2} \)
17 \( 1 + 5.80T + 17T^{2} \)
23 \( 1 + 0.414T + 23T^{2} \)
29 \( 1 + 6.43T + 29T^{2} \)
31 \( 1 - 3.70T + 31T^{2} \)
37 \( 1 - 6.12T + 37T^{2} \)
41 \( 1 - 9.22T + 41T^{2} \)
43 \( 1 - 4.21T + 43T^{2} \)
47 \( 1 - 5.09T + 47T^{2} \)
53 \( 1 - 1.12T + 53T^{2} \)
59 \( 1 + 1.50T + 59T^{2} \)
61 \( 1 + 10.0T + 61T^{2} \)
67 \( 1 - 14.4T + 67T^{2} \)
71 \( 1 + 7.20T + 71T^{2} \)
73 \( 1 + 10.6T + 73T^{2} \)
79 \( 1 + 1.57T + 79T^{2} \)
83 \( 1 + 10.8T + 83T^{2} \)
89 \( 1 + 16.4T + 89T^{2} \)
97 \( 1 + 5.01T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.36289584027225111029593133106, −6.69035702975665607012505184369, −6.07214882593221255594319507445, −5.66440042605384834929205220420, −4.13027137465235306641214378408, −4.05526979755445953678921875330, −2.95605628302064226315257733251, −2.41605436783364866084588692232, −1.31178256763126377081003483962, 0, 1.31178256763126377081003483962, 2.41605436783364866084588692232, 2.95605628302064226315257733251, 4.05526979755445953678921875330, 4.13027137465235306641214378408, 5.66440042605384834929205220420, 6.07214882593221255594319507445, 6.69035702975665607012505184369, 7.36289584027225111029593133106

Graph of the $Z$-function along the critical line