Properties

Label 2-87-87.86-c0-0-0
Degree 22
Conductor 8787
Sign 11
Analytic cond. 0.04341860.0434186
Root an. cond. 0.2083710.208371
Motivic weight 00
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s − 6-s − 7-s + 8-s + 9-s − 11-s − 13-s + 14-s − 16-s − 17-s − 18-s − 21-s + 22-s + 24-s + 25-s + 26-s + 27-s + 29-s − 33-s + 34-s − 39-s + 2·41-s + 42-s − 47-s − 48-s − 50-s + ⋯
L(s)  = 1  − 2-s + 3-s − 6-s − 7-s + 8-s + 9-s − 11-s − 13-s + 14-s − 16-s − 17-s − 18-s − 21-s + 22-s + 24-s + 25-s + 26-s + 27-s + 29-s − 33-s + 34-s − 39-s + 2·41-s + 42-s − 47-s − 48-s − 50-s + ⋯

Functional equation

Λ(s)=(87s/2ΓC(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}
Λ(s)=(87s/2ΓC(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 87 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 8787    =    3293 \cdot 29
Sign: 11
Analytic conductor: 0.04341860.0434186
Root analytic conductor: 0.2083710.208371
Motivic weight: 00
Rational: yes
Arithmetic: yes
Character: χ87(86,)\chi_{87} (86, \cdot )
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 87, ( :0), 1)(2,\ 87,\ (\ :0),\ 1)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.39608261790.3960826179
L(12)L(\frac12) \approx 0.39608261790.3960826179
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1T 1 - T
29 1T 1 - T
good2 1+T+T2 1 + T + T^{2}
5 (1T)(1+T) ( 1 - T )( 1 + T )
7 1+T+T2 1 + T + T^{2}
11 1+T+T2 1 + T + T^{2}
13 1+T+T2 1 + T + T^{2}
17 1+T+T2 1 + T + T^{2}
19 (1T)(1+T) ( 1 - T )( 1 + T )
23 (1T)(1+T) ( 1 - T )( 1 + T )
31 (1T)(1+T) ( 1 - T )( 1 + T )
37 (1T)(1+T) ( 1 - T )( 1 + T )
41 (1T)2 ( 1 - T )^{2}
43 (1T)(1+T) ( 1 - T )( 1 + T )
47 1+T+T2 1 + T + T^{2}
53 (1T)(1+T) ( 1 - T )( 1 + T )
59 (1T)(1+T) ( 1 - T )( 1 + T )
61 (1T)(1+T) ( 1 - T )( 1 + T )
67 1+T+T2 1 + T + T^{2}
71 (1T)(1+T) ( 1 - T )( 1 + T )
73 (1T)(1+T) ( 1 - T )( 1 + T )
79 (1T)(1+T) ( 1 - T )( 1 + T )
83 (1T)(1+T) ( 1 - T )( 1 + T )
89 1+T+T2 1 + T + T^{2}
97 (1T)(1+T) ( 1 - T )( 1 + T )
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−14.45102409066779657045769585783, −13.32162862510749184354432270374, −12.66997768785203913828312408994, −10.65716487846662969380774941347, −9.805231985523799033951222248495, −9.004858706215995835885407289726, −7.939979829085170543073834513148, −6.89861709118401082750268414601, −4.60444267458741594170483479006, −2.68368590772453422884570720998, 2.68368590772453422884570720998, 4.60444267458741594170483479006, 6.89861709118401082750268414601, 7.939979829085170543073834513148, 9.004858706215995835885407289726, 9.805231985523799033951222248495, 10.65716487846662969380774941347, 12.66997768785203913828312408994, 13.32162862510749184354432270374, 14.45102409066779657045769585783

Graph of the ZZ-function along the critical line