L(s) = 1 | + 2-s − 3-s − 6-s − 7-s − 8-s + 9-s + 11-s − 13-s − 14-s − 16-s + 17-s + 18-s + 21-s + 22-s + 24-s + 25-s − 26-s − 27-s − 29-s − 33-s + 34-s + 39-s − 2·41-s + 42-s + 47-s + 48-s + 50-s + ⋯ |
L(s) = 1 | + 2-s − 3-s − 6-s − 7-s − 8-s + 9-s + 11-s − 13-s − 14-s − 16-s + 17-s + 18-s + 21-s + 22-s + 24-s + 25-s − 26-s − 27-s − 29-s − 33-s + 34-s + 39-s − 2·41-s + 42-s + 47-s + 48-s + 50-s + ⋯ |
Λ(s)=(=(87s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(87s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
87
= 3⋅29
|
Sign: |
1
|
Analytic conductor: |
0.0434186 |
Root analytic conductor: |
0.208371 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ87(86,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 87, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.5770586370 |
L(21) |
≈ |
0.5770586370 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 29 | 1+T |
good | 2 | 1−T+T2 |
| 5 | (1−T)(1+T) |
| 7 | 1+T+T2 |
| 11 | 1−T+T2 |
| 13 | 1+T+T2 |
| 17 | 1−T+T2 |
| 19 | (1−T)(1+T) |
| 23 | (1−T)(1+T) |
| 31 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | (1+T)2 |
| 43 | (1−T)(1+T) |
| 47 | 1−T+T2 |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | (1−T)(1+T) |
| 67 | 1+T+T2 |
| 71 | (1−T)(1+T) |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | (1−T)(1+T) |
| 89 | 1−T+T2 |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.39892195706409998885986607529, −13.18133367873374302632506132995, −12.37546425848442860075315832869, −11.74152542706301551240275566622, −10.16119846875737190734833337722, −9.215490822664834597853334075143, −7.06152498257571751488998986929, −6.04035672910010770144714336001, −4.91310283918857793479423733862, −3.53215773738360323132247593606,
3.53215773738360323132247593606, 4.91310283918857793479423733862, 6.04035672910010770144714336001, 7.06152498257571751488998986929, 9.215490822664834597853334075143, 10.16119846875737190734833337722, 11.74152542706301551240275566622, 12.37546425848442860075315832869, 13.18133367873374302632506132995, 14.39892195706409998885986607529