L(s) = 1 | + (0.781 − 0.623i)2-s + (0.222 − 0.974i)4-s + (1.35 − 0.651i)5-s + (1.05 − 2.42i)7-s + (−0.433 − 0.900i)8-s + (0.651 − 1.35i)10-s + (1.68 − 1.34i)11-s + (−2.26 + 1.80i)13-s + (−0.691 − 2.55i)14-s + (−0.900 − 0.433i)16-s + (−0.0455 − 0.199i)17-s − 5.39i·19-s + (−0.334 − 1.46i)20-s + (0.480 − 2.10i)22-s + (−1.31 − 0.300i)23-s + ⋯ |
L(s) = 1 | + (0.552 − 0.440i)2-s + (0.111 − 0.487i)4-s + (0.604 − 0.291i)5-s + (0.397 − 0.917i)7-s + (−0.153 − 0.318i)8-s + (0.206 − 0.427i)10-s + (0.508 − 0.405i)11-s + (−0.628 + 0.501i)13-s + (−0.184 − 0.682i)14-s + (−0.225 − 0.108i)16-s + (−0.0110 − 0.0483i)17-s − 1.23i·19-s + (−0.0747 − 0.327i)20-s + (0.102 − 0.448i)22-s + (−0.274 − 0.0626i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0734 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0734 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61348 - 1.73671i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61348 - 1.73671i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.781 + 0.623i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.05 + 2.42i)T \) |
good | 5 | \( 1 + (-1.35 + 0.651i)T + (3.11 - 3.90i)T^{2} \) |
| 11 | \( 1 + (-1.68 + 1.34i)T + (2.44 - 10.7i)T^{2} \) |
| 13 | \( 1 + (2.26 - 1.80i)T + (2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + (0.0455 + 0.199i)T + (-15.3 + 7.37i)T^{2} \) |
| 19 | \( 1 + 5.39iT - 19T^{2} \) |
| 23 | \( 1 + (1.31 + 0.300i)T + (20.7 + 9.97i)T^{2} \) |
| 29 | \( 1 + (-9.29 + 2.12i)T + (26.1 - 12.5i)T^{2} \) |
| 31 | \( 1 - 7.31iT - 31T^{2} \) |
| 37 | \( 1 + (0.0944 + 0.413i)T + (-33.3 + 16.0i)T^{2} \) |
| 41 | \( 1 + (-1.15 + 0.556i)T + (25.5 - 32.0i)T^{2} \) |
| 43 | \( 1 + (8.01 + 3.86i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (2.87 + 3.60i)T + (-10.4 + 45.8i)T^{2} \) |
| 53 | \( 1 + (-7.68 - 1.75i)T + (47.7 + 22.9i)T^{2} \) |
| 59 | \( 1 + (-5.96 - 2.87i)T + (36.7 + 46.1i)T^{2} \) |
| 61 | \( 1 + (1.14 - 0.260i)T + (54.9 - 26.4i)T^{2} \) |
| 67 | \( 1 + 1.42T + 67T^{2} \) |
| 71 | \( 1 + (-10.7 - 2.44i)T + (63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (5.67 + 4.52i)T + (16.2 + 71.1i)T^{2} \) |
| 79 | \( 1 - 10.0T + 79T^{2} \) |
| 83 | \( 1 + (-4.55 + 5.71i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (4.14 - 5.20i)T + (-19.8 - 86.7i)T^{2} \) |
| 97 | \( 1 - 18.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.07078455669481799256280873684, −9.234623480360755874903247074997, −8.364160455754511380042077031030, −7.08209943712051525570404461267, −6.50501020950965967066550473230, −5.22881208967227920596421747160, −4.60490321583488173640370979550, −3.54991839723126251980207537547, −2.25552841031723085806084641032, −1.01213358866575292616218436375,
1.90764359612071326234978132699, 2.90010114637551658941791329348, 4.22347909277725910323043410744, 5.21501625491200967957606852342, 5.99226274582739406956770550092, 6.68596567442632579470243243888, 7.87184248604049994525723118997, 8.446513932984298222653708543257, 9.645664933907851826663659816800, 10.15133270455694844449404688161