Properties

Label 882.2.v.a.629.14
Level $882$
Weight $2$
Character 882.629
Analytic conductor $7.043$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(125,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.125");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.v (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 629.14
Character \(\chi\) \(=\) 882.629
Dual form 882.2.v.a.251.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.781831 - 0.623490i) q^{2} +(0.222521 - 0.974928i) q^{4} +(1.35279 - 0.651468i) q^{5} +(1.05127 - 2.42793i) q^{7} +(-0.433884 - 0.900969i) q^{8} +O(q^{10})\) \(q+(0.781831 - 0.623490i) q^{2} +(0.222521 - 0.974928i) q^{4} +(1.35279 - 0.651468i) q^{5} +(1.05127 - 2.42793i) q^{7} +(-0.433884 - 0.900969i) q^{8} +(0.651468 - 1.35279i) q^{10} +(1.68791 - 1.34606i) q^{11} +(-2.26715 + 1.80799i) q^{13} +(-0.691870 - 2.55369i) q^{14} +(-0.900969 - 0.433884i) q^{16} +(-0.0455349 - 0.199501i) q^{17} -5.39752i q^{19} +(-0.334111 - 1.46384i) q^{20} +(0.480404 - 2.10479i) q^{22} +(-1.31536 - 0.300223i) q^{23} +(-1.71182 + 2.14656i) q^{25} +(-0.645265 + 2.82709i) q^{26} +(-2.13312 - 1.56518i) q^{28} +(9.29440 - 2.12139i) q^{29} +7.31951i q^{31} +(-0.974928 + 0.222521i) q^{32} +(-0.159988 - 0.127586i) q^{34} +(-0.159570 - 3.96934i) q^{35} +(-0.0944532 - 0.413827i) q^{37} +(-3.36530 - 4.21995i) q^{38} +(-1.17391 - 0.936158i) q^{40} +(1.15593 - 0.556665i) q^{41} +(-8.01852 - 3.86152i) q^{43} +(-0.936719 - 1.94512i) q^{44} +(-1.21558 + 0.585392i) q^{46} +(-2.87406 - 3.60396i) q^{47} +(-4.78966 - 5.10482i) q^{49} +2.74555i q^{50} +(1.25817 + 2.61263i) q^{52} +(7.68111 + 1.75316i) q^{53} +(1.40647 - 2.92056i) q^{55} +(-2.64362 + 0.106275i) q^{56} +(5.94399 - 7.45353i) q^{58} +(5.96899 + 2.87452i) q^{59} +(-1.14351 + 0.260999i) q^{61} +(4.56364 + 5.72263i) q^{62} +(-0.623490 + 0.781831i) q^{64} +(-1.88912 + 3.92281i) q^{65} -1.42683 q^{67} -0.204632 q^{68} +(-2.59960 - 3.00386i) q^{70} +(10.7059 + 2.44356i) q^{71} +(-5.67419 - 4.52502i) q^{73} +(-0.331863 - 0.264652i) q^{74} +(-5.26220 - 1.20106i) q^{76} +(-1.49369 - 5.51320i) q^{77} +10.0908 q^{79} -1.50148 q^{80} +(0.556665 - 1.15593i) q^{82} +(4.55824 - 5.71585i) q^{83} +(-0.191568 - 0.240219i) q^{85} +(-8.67675 + 1.98041i) q^{86} +(-1.94512 - 0.936719i) q^{88} +(-4.14732 + 5.20058i) q^{89} +(2.00628 + 7.40517i) q^{91} +(-0.585392 + 1.21558i) q^{92} +(-4.49406 - 1.02574i) q^{94} +(-3.51632 - 7.30170i) q^{95} +18.0992i q^{97} +(-6.92751 - 1.00481i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 16 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 96 q + 16 q^{4} - 16 q^{16} + 20 q^{22} - 8 q^{25} + 76 q^{37} + 28 q^{40} - 8 q^{43} + 112 q^{49} + 28 q^{52} + 28 q^{55} + 20 q^{58} + 84 q^{61} + 16 q^{64} - 8 q^{67} + 28 q^{70} + 112 q^{85} + 8 q^{88} - 56 q^{91} - 56 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{5}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.781831 0.623490i 0.552838 0.440874i
\(3\) 0 0
\(4\) 0.222521 0.974928i 0.111260 0.487464i
\(5\) 1.35279 0.651468i 0.604985 0.291345i −0.106206 0.994344i \(-0.533870\pi\)
0.711191 + 0.702999i \(0.248156\pi\)
\(6\) 0 0
\(7\) 1.05127 2.42793i 0.397343 0.917670i
\(8\) −0.433884 0.900969i −0.153401 0.318541i
\(9\) 0 0
\(10\) 0.651468 1.35279i 0.206012 0.427789i
\(11\) 1.68791 1.34606i 0.508924 0.405853i −0.335081 0.942189i \(-0.608764\pi\)
0.844004 + 0.536336i \(0.180192\pi\)
\(12\) 0 0
\(13\) −2.26715 + 1.80799i −0.628795 + 0.501447i −0.885254 0.465108i \(-0.846015\pi\)
0.256459 + 0.966555i \(0.417444\pi\)
\(14\) −0.691870 2.55369i −0.184910 0.682501i
\(15\) 0 0
\(16\) −0.900969 0.433884i −0.225242 0.108471i
\(17\) −0.0455349 0.199501i −0.0110438 0.0483862i 0.969106 0.246646i \(-0.0793283\pi\)
−0.980150 + 0.198259i \(0.936471\pi\)
\(18\) 0 0
\(19\) 5.39752i 1.23828i −0.785282 0.619138i \(-0.787482\pi\)
0.785282 0.619138i \(-0.212518\pi\)
\(20\) −0.334111 1.46384i −0.0747095 0.327324i
\(21\) 0 0
\(22\) 0.480404 2.10479i 0.102422 0.448742i
\(23\) −1.31536 0.300223i −0.274272 0.0626009i 0.0831723 0.996535i \(-0.473495\pi\)
−0.357445 + 0.933934i \(0.616352\pi\)
\(24\) 0 0
\(25\) −1.71182 + 2.14656i −0.342365 + 0.429312i
\(26\) −0.645265 + 2.82709i −0.126547 + 0.554438i
\(27\) 0 0
\(28\) −2.13312 1.56518i −0.403122 0.295791i
\(29\) 9.29440 2.12139i 1.72593 0.393931i 0.759426 0.650594i \(-0.225480\pi\)
0.966501 + 0.256663i \(0.0826229\pi\)
\(30\) 0 0
\(31\) 7.31951i 1.31462i 0.753619 + 0.657312i \(0.228306\pi\)
−0.753619 + 0.657312i \(0.771694\pi\)
\(32\) −0.974928 + 0.222521i −0.172345 + 0.0393365i
\(33\) 0 0
\(34\) −0.159988 0.127586i −0.0274377 0.0218808i
\(35\) −0.159570 3.96934i −0.0269722 0.670941i
\(36\) 0 0
\(37\) −0.0944532 0.413827i −0.0155280 0.0680327i 0.966570 0.256402i \(-0.0825370\pi\)
−0.982098 + 0.188369i \(0.939680\pi\)
\(38\) −3.36530 4.21995i −0.545924 0.684567i
\(39\) 0 0
\(40\) −1.17391 0.936158i −0.185611 0.148020i
\(41\) 1.15593 0.556665i 0.180525 0.0869364i −0.341438 0.939904i \(-0.610914\pi\)
0.521963 + 0.852968i \(0.325200\pi\)
\(42\) 0 0
\(43\) −8.01852 3.86152i −1.22281 0.588876i −0.292719 0.956198i \(-0.594560\pi\)
−0.930094 + 0.367323i \(0.880274\pi\)
\(44\) −0.936719 1.94512i −0.141216 0.293237i
\(45\) 0 0
\(46\) −1.21558 + 0.585392i −0.179227 + 0.0863114i
\(47\) −2.87406 3.60396i −0.419225 0.525691i 0.526711 0.850044i \(-0.323425\pi\)
−0.945936 + 0.324353i \(0.894853\pi\)
\(48\) 0 0
\(49\) −4.78966 5.10482i −0.684237 0.729260i
\(50\) 2.74555i 0.388280i
\(51\) 0 0
\(52\) 1.25817 + 2.61263i 0.174477 + 0.362306i
\(53\) 7.68111 + 1.75316i 1.05508 + 0.240816i 0.714671 0.699461i \(-0.246577\pi\)
0.340411 + 0.940277i \(0.389434\pi\)
\(54\) 0 0
\(55\) 1.40647 2.92056i 0.189648 0.393808i
\(56\) −2.64362 + 0.106275i −0.353268 + 0.0142016i
\(57\) 0 0
\(58\) 5.94399 7.45353i 0.780484 0.978696i
\(59\) 5.96899 + 2.87452i 0.777097 + 0.374230i 0.780011 0.625766i \(-0.215213\pi\)
−0.00291427 + 0.999996i \(0.500928\pi\)
\(60\) 0 0
\(61\) −1.14351 + 0.260999i −0.146411 + 0.0334174i −0.295098 0.955467i \(-0.595352\pi\)
0.148687 + 0.988884i \(0.452495\pi\)
\(62\) 4.56364 + 5.72263i 0.579583 + 0.726774i
\(63\) 0 0
\(64\) −0.623490 + 0.781831i −0.0779362 + 0.0977289i
\(65\) −1.88912 + 3.92281i −0.234317 + 0.486564i
\(66\) 0 0
\(67\) −1.42683 −0.174315 −0.0871573 0.996195i \(-0.527778\pi\)
−0.0871573 + 0.996195i \(0.527778\pi\)
\(68\) −0.204632 −0.0248153
\(69\) 0 0
\(70\) −2.59960 3.00386i −0.310712 0.359031i
\(71\) 10.7059 + 2.44356i 1.27056 + 0.289998i 0.804074 0.594530i \(-0.202662\pi\)
0.466489 + 0.884527i \(0.345519\pi\)
\(72\) 0 0
\(73\) −5.67419 4.52502i −0.664114 0.529613i 0.232405 0.972619i \(-0.425341\pi\)
−0.896519 + 0.443006i \(0.853912\pi\)
\(74\) −0.331863 0.264652i −0.0385783 0.0307652i
\(75\) 0 0
\(76\) −5.26220 1.20106i −0.603615 0.137771i
\(77\) −1.49369 5.51320i −0.170222 0.628287i
\(78\) 0 0
\(79\) 10.0908 1.13531 0.567654 0.823267i \(-0.307851\pi\)
0.567654 + 0.823267i \(0.307851\pi\)
\(80\) −1.50148 −0.167871
\(81\) 0 0
\(82\) 0.556665 1.15593i 0.0614733 0.127651i
\(83\) 4.55824 5.71585i 0.500332 0.627396i −0.465972 0.884799i \(-0.654295\pi\)
0.966304 + 0.257403i \(0.0828668\pi\)
\(84\) 0 0
\(85\) −0.191568 0.240219i −0.0207785 0.0260554i
\(86\) −8.67675 + 1.98041i −0.935638 + 0.213553i
\(87\) 0 0
\(88\) −1.94512 0.936719i −0.207350 0.0998546i
\(89\) −4.14732 + 5.20058i −0.439615 + 0.551260i −0.951442 0.307829i \(-0.900398\pi\)
0.511827 + 0.859089i \(0.328969\pi\)
\(90\) 0 0
\(91\) 2.00628 + 7.40517i 0.210316 + 0.776273i
\(92\) −0.585392 + 1.21558i −0.0610314 + 0.126733i
\(93\) 0 0
\(94\) −4.49406 1.02574i −0.463527 0.105797i
\(95\) −3.51632 7.30170i −0.360766 0.749139i
\(96\) 0 0
\(97\) 18.0992i 1.83770i 0.394612 + 0.918848i \(0.370879\pi\)
−0.394612 + 0.918848i \(0.629121\pi\)
\(98\) −6.92751 1.00481i −0.699784 0.101501i
\(99\) 0 0
\(100\) 1.71182 + 2.14656i 0.171182 + 0.214656i
\(101\) −13.8795 + 6.68400i −1.38106 + 0.665083i −0.969225 0.246176i \(-0.920826\pi\)
−0.411834 + 0.911259i \(0.635112\pi\)
\(102\) 0 0
\(103\) −0.0524422 0.108897i −0.00516729 0.0107300i 0.898369 0.439241i \(-0.144753\pi\)
−0.903537 + 0.428511i \(0.859038\pi\)
\(104\) 2.61263 + 1.25817i 0.256189 + 0.123374i
\(105\) 0 0
\(106\) 7.09842 3.41842i 0.689459 0.332026i
\(107\) 12.9825 + 10.3532i 1.25506 + 1.00088i 0.999418 + 0.0341092i \(0.0108594\pi\)
0.255645 + 0.966771i \(0.417712\pi\)
\(108\) 0 0
\(109\) −6.79050 8.51501i −0.650412 0.815590i 0.341850 0.939754i \(-0.388946\pi\)
−0.992262 + 0.124164i \(0.960375\pi\)
\(110\) −0.721318 3.16030i −0.0687750 0.301323i
\(111\) 0 0
\(112\) −2.00060 + 1.73136i −0.189039 + 0.163598i
\(113\) 2.73829 + 2.18372i 0.257597 + 0.205427i 0.743770 0.668436i \(-0.233036\pi\)
−0.486173 + 0.873863i \(0.661607\pi\)
\(114\) 0 0
\(115\) −1.97500 + 0.450780i −0.184169 + 0.0420354i
\(116\) 9.53342i 0.885156i
\(117\) 0 0
\(118\) 6.45898 1.47422i 0.594597 0.135713i
\(119\) −0.532244 0.0991748i −0.0487908 0.00909134i
\(120\) 0 0
\(121\) −1.41058 + 6.18015i −0.128234 + 0.561831i
\(122\) −0.731302 + 0.917023i −0.0662089 + 0.0830234i
\(123\) 0 0
\(124\) 7.13600 + 1.62874i 0.640831 + 0.146266i
\(125\) −2.58787 + 11.3382i −0.231467 + 1.01412i
\(126\) 0 0
\(127\) −0.626861 2.74646i −0.0556249 0.243709i 0.939470 0.342630i \(-0.111318\pi\)
−0.995095 + 0.0989216i \(0.968461\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0.968854 + 4.24483i 0.0849741 + 0.372296i
\(131\) 5.11176 + 2.46170i 0.446617 + 0.215079i 0.643654 0.765317i \(-0.277418\pi\)
−0.197037 + 0.980396i \(0.563132\pi\)
\(132\) 0 0
\(133\) −13.1048 5.67426i −1.13633 0.492021i
\(134\) −1.11554 + 0.889612i −0.0963678 + 0.0768508i
\(135\) 0 0
\(136\) −0.159988 + 0.127586i −0.0137188 + 0.0109404i
\(137\) 2.38003 4.94219i 0.203340 0.422240i −0.774214 0.632924i \(-0.781855\pi\)
0.977554 + 0.210684i \(0.0675690\pi\)
\(138\) 0 0
\(139\) 7.83497 + 16.2695i 0.664554 + 1.37996i 0.911650 + 0.410969i \(0.134809\pi\)
−0.247096 + 0.968991i \(0.579476\pi\)
\(140\) −3.90533 0.727692i −0.330060 0.0615012i
\(141\) 0 0
\(142\) 9.89378 4.76459i 0.830268 0.399836i
\(143\) −1.39307 + 6.10345i −0.116495 + 0.510397i
\(144\) 0 0
\(145\) 11.1913 8.92479i 0.929390 0.741164i
\(146\) −7.25756 −0.600640
\(147\) 0 0
\(148\) −0.424469 −0.0348911
\(149\) −4.98163 + 3.97272i −0.408111 + 0.325458i −0.805935 0.592004i \(-0.798337\pi\)
0.397824 + 0.917462i \(0.369765\pi\)
\(150\) 0 0
\(151\) 0.923274 4.04513i 0.0751350 0.329188i −0.923366 0.383921i \(-0.874574\pi\)
0.998501 + 0.0547329i \(0.0174307\pi\)
\(152\) −4.86300 + 2.34190i −0.394441 + 0.189953i
\(153\) 0 0
\(154\) −4.60524 3.37909i −0.371100 0.272295i
\(155\) 4.76843 + 9.90175i 0.383010 + 0.795328i
\(156\) 0 0
\(157\) −5.75842 + 11.9575i −0.459572 + 0.954312i 0.534457 + 0.845196i \(0.320516\pi\)
−0.994029 + 0.109116i \(0.965198\pi\)
\(158\) 7.88933 6.29153i 0.627642 0.500527i
\(159\) 0 0
\(160\) −1.17391 + 0.936158i −0.0928054 + 0.0740098i
\(161\) −2.11173 + 2.87799i −0.166427 + 0.226818i
\(162\) 0 0
\(163\) 14.1708 + 6.82429i 1.10994 + 0.534519i 0.896771 0.442496i \(-0.145907\pi\)
0.213170 + 0.977015i \(0.431621\pi\)
\(164\) −0.285490 1.25081i −0.0222930 0.0976721i
\(165\) 0 0
\(166\) 7.31085i 0.567432i
\(167\) −0.487595 2.13629i −0.0377312 0.165311i 0.952552 0.304375i \(-0.0984477\pi\)
−0.990283 + 0.139064i \(0.955591\pi\)
\(168\) 0 0
\(169\) −1.02163 + 4.47608i −0.0785873 + 0.344313i
\(170\) −0.299548 0.0683698i −0.0229743 0.00524372i
\(171\) 0 0
\(172\) −5.54899 + 6.95821i −0.423106 + 0.530559i
\(173\) −2.37986 + 10.4268i −0.180937 + 0.792738i 0.800248 + 0.599669i \(0.204701\pi\)
−0.981185 + 0.193069i \(0.938156\pi\)
\(174\) 0 0
\(175\) 3.41210 + 6.41280i 0.257930 + 0.484762i
\(176\) −2.10479 + 0.480404i −0.158654 + 0.0362118i
\(177\) 0 0
\(178\) 6.65179i 0.498573i
\(179\) −6.12193 + 1.39729i −0.457574 + 0.104438i −0.445094 0.895484i \(-0.646830\pi\)
−0.0124802 + 0.999922i \(0.503973\pi\)
\(180\) 0 0
\(181\) 8.03542 + 6.40804i 0.597268 + 0.476306i 0.874848 0.484397i \(-0.160961\pi\)
−0.277580 + 0.960703i \(0.589532\pi\)
\(182\) 6.18562 + 4.53870i 0.458509 + 0.336431i
\(183\) 0 0
\(184\) 0.300223 + 1.31536i 0.0221328 + 0.0969699i
\(185\) −0.397370 0.498286i −0.0292152 0.0366347i
\(186\) 0 0
\(187\) −0.345400 0.275447i −0.0252582 0.0201427i
\(188\) −4.15314 + 2.00005i −0.302899 + 0.145868i
\(189\) 0 0
\(190\) −7.30170 3.51632i −0.529721 0.255100i
\(191\) −7.78261 16.1607i −0.563130 1.16935i −0.967057 0.254560i \(-0.918069\pi\)
0.403927 0.914791i \(-0.367645\pi\)
\(192\) 0 0
\(193\) −3.69255 + 1.77824i −0.265796 + 0.128000i −0.562035 0.827113i \(-0.689982\pi\)
0.296240 + 0.955114i \(0.404267\pi\)
\(194\) 11.2847 + 14.1505i 0.810192 + 1.01595i
\(195\) 0 0
\(196\) −6.04263 + 3.53364i −0.431617 + 0.252403i
\(197\) 14.7696i 1.05229i 0.850395 + 0.526144i \(0.176363\pi\)
−0.850395 + 0.526144i \(0.823637\pi\)
\(198\) 0 0
\(199\) 8.20609 + 17.0401i 0.581714 + 1.20794i 0.959411 + 0.282013i \(0.0910021\pi\)
−0.377696 + 0.925930i \(0.623284\pi\)
\(200\) 2.67672 + 0.610943i 0.189272 + 0.0432002i
\(201\) 0 0
\(202\) −6.68400 + 13.8795i −0.470285 + 0.976556i
\(203\) 4.62037 24.7963i 0.324286 1.74036i
\(204\) 0 0
\(205\) 1.20107 1.50610i 0.0838866 0.105190i
\(206\) −0.108897 0.0524422i −0.00758724 0.00365382i
\(207\) 0 0
\(208\) 2.82709 0.645265i 0.196024 0.0447411i
\(209\) −7.26540 9.11053i −0.502558 0.630188i
\(210\) 0 0
\(211\) 9.29395 11.6542i 0.639822 0.802311i −0.351159 0.936316i \(-0.614212\pi\)
0.990981 + 0.134005i \(0.0427838\pi\)
\(212\) 3.41842 7.09842i 0.234778 0.487521i
\(213\) 0 0
\(214\) 16.6052 1.13511
\(215\) −13.3630 −0.911350
\(216\) 0 0
\(217\) 17.7712 + 7.69480i 1.20639 + 0.522357i
\(218\) −10.6180 2.42350i −0.719145 0.164140i
\(219\) 0 0
\(220\) −2.53436 2.02109i −0.170867 0.136262i
\(221\) 0.463932 + 0.369973i 0.0312074 + 0.0248871i
\(222\) 0 0
\(223\) 13.7631 + 3.14133i 0.921644 + 0.210359i 0.656916 0.753964i \(-0.271861\pi\)
0.264728 + 0.964323i \(0.414718\pi\)
\(224\) −0.484650 + 2.60098i −0.0323820 + 0.173786i
\(225\) 0 0
\(226\) 3.50241 0.232977
\(227\) −15.9299 −1.05731 −0.528654 0.848837i \(-0.677303\pi\)
−0.528654 + 0.848837i \(0.677303\pi\)
\(228\) 0 0
\(229\) 7.06838 14.6776i 0.467092 0.969926i −0.525767 0.850629i \(-0.676222\pi\)
0.992859 0.119297i \(-0.0380641\pi\)
\(230\) −1.26306 + 1.58382i −0.0832835 + 0.104434i
\(231\) 0 0
\(232\) −5.94399 7.45353i −0.390242 0.489348i
\(233\) −7.71873 + 1.76175i −0.505671 + 0.115416i −0.467743 0.883864i \(-0.654933\pi\)
−0.0379277 + 0.999280i \(0.512076\pi\)
\(234\) 0 0
\(235\) −6.23586 3.00303i −0.406783 0.195896i
\(236\) 4.13067 5.17970i 0.268884 0.337170i
\(237\) 0 0
\(238\) −0.477960 + 0.254311i −0.0309815 + 0.0164845i
\(239\) 8.84157 18.3597i 0.571914 1.18759i −0.391650 0.920114i \(-0.628096\pi\)
0.963564 0.267477i \(-0.0861900\pi\)
\(240\) 0 0
\(241\) −6.16349 1.40678i −0.397025 0.0906185i 0.0193465 0.999813i \(-0.493841\pi\)
−0.416372 + 0.909194i \(0.636699\pi\)
\(242\) 2.75042 + 5.71131i 0.176804 + 0.367137i
\(243\) 0 0
\(244\) 1.17292i 0.0750883i
\(245\) −9.80502 3.78543i −0.626420 0.241842i
\(246\) 0 0
\(247\) 9.75868 + 12.2370i 0.620930 + 0.778622i
\(248\) 6.59465 3.17582i 0.418761 0.201665i
\(249\) 0 0
\(250\) 5.04598 + 10.4781i 0.319136 + 0.662693i
\(251\) 0.781617 + 0.376407i 0.0493352 + 0.0237586i 0.458389 0.888752i \(-0.348427\pi\)
−0.409053 + 0.912510i \(0.634141\pi\)
\(252\) 0 0
\(253\) −2.62433 + 1.26381i −0.164990 + 0.0794552i
\(254\) −2.20249 1.75643i −0.138196 0.110208i
\(255\) 0 0
\(256\) 0.623490 + 0.781831i 0.0389681 + 0.0488645i
\(257\) 0.502741 + 2.20265i 0.0313601 + 0.137398i 0.988185 0.153269i \(-0.0489801\pi\)
−0.956824 + 0.290667i \(0.906123\pi\)
\(258\) 0 0
\(259\) −1.10404 0.205719i −0.0686015 0.0127827i
\(260\) 3.40409 + 2.71467i 0.211112 + 0.168357i
\(261\) 0 0
\(262\) 5.53138 1.26250i 0.341730 0.0779976i
\(263\) 17.7691i 1.09569i −0.836579 0.547846i \(-0.815448\pi\)
0.836579 0.547846i \(-0.184552\pi\)
\(264\) 0 0
\(265\) 11.5330 2.63234i 0.708470 0.161704i
\(266\) −13.7836 + 3.73439i −0.845126 + 0.228970i
\(267\) 0 0
\(268\) −0.317499 + 1.39105i −0.0193943 + 0.0849721i
\(269\) −19.1598 + 24.0257i −1.16820 + 1.46487i −0.310605 + 0.950539i \(0.600532\pi\)
−0.857591 + 0.514333i \(0.828040\pi\)
\(270\) 0 0
\(271\) −2.69899 0.616026i −0.163952 0.0374209i 0.139757 0.990186i \(-0.455368\pi\)
−0.303709 + 0.952765i \(0.598225\pi\)
\(272\) −0.0455349 + 0.199501i −0.00276096 + 0.0120965i
\(273\) 0 0
\(274\) −1.22062 5.34789i −0.0737404 0.323078i
\(275\) 5.92742i 0.357437i
\(276\) 0 0
\(277\) −4.32785 18.9615i −0.260035 1.13929i −0.921213 0.389059i \(-0.872800\pi\)
0.661178 0.750229i \(-0.270057\pi\)
\(278\) 16.2695 + 7.83497i 0.975779 + 0.469910i
\(279\) 0 0
\(280\) −3.50702 + 1.86600i −0.209584 + 0.111515i
\(281\) 19.2555 15.3557i 1.14869 0.916047i 0.151314 0.988486i \(-0.451650\pi\)
0.997373 + 0.0724387i \(0.0230782\pi\)
\(282\) 0 0
\(283\) −25.0714 + 19.9938i −1.49034 + 1.18851i −0.556487 + 0.830856i \(0.687851\pi\)
−0.933855 + 0.357652i \(0.883577\pi\)
\(284\) 4.76459 9.89378i 0.282727 0.587088i
\(285\) 0 0
\(286\) 2.71629 + 5.64044i 0.160618 + 0.333526i
\(287\) −0.136349 3.39171i −0.00804841 0.200206i
\(288\) 0 0
\(289\) 15.2787 7.35786i 0.898750 0.432815i
\(290\) 3.18522 13.9554i 0.187043 0.819487i
\(291\) 0 0
\(292\) −5.67419 + 4.52502i −0.332057 + 0.264807i
\(293\) −24.7786 −1.44758 −0.723789 0.690021i \(-0.757601\pi\)
−0.723789 + 0.690021i \(0.757601\pi\)
\(294\) 0 0
\(295\) 9.94744 0.579162
\(296\) −0.331863 + 0.264652i −0.0192892 + 0.0153826i
\(297\) 0 0
\(298\) −1.41785 + 6.21199i −0.0821336 + 0.359851i
\(299\) 3.52493 1.69752i 0.203852 0.0981700i
\(300\) 0 0
\(301\) −17.8051 + 15.4089i −1.02627 + 0.888153i
\(302\) −1.80025 3.73826i −0.103593 0.215113i
\(303\) 0 0
\(304\) −2.34190 + 4.86300i −0.134317 + 0.278912i
\(305\) −1.37689 + 1.09804i −0.0788407 + 0.0628733i
\(306\) 0 0
\(307\) −3.08325 + 2.45881i −0.175971 + 0.140332i −0.707514 0.706699i \(-0.750184\pi\)
0.531544 + 0.847031i \(0.321612\pi\)
\(308\) −5.70735 + 0.229439i −0.325206 + 0.0130735i
\(309\) 0 0
\(310\) 9.90175 + 4.76843i 0.562382 + 0.270829i
\(311\) −1.45343 6.36788i −0.0824163 0.361089i 0.916857 0.399217i \(-0.130718\pi\)
−0.999273 + 0.0381273i \(0.987861\pi\)
\(312\) 0 0
\(313\) 22.9071i 1.29479i −0.762156 0.647393i \(-0.775859\pi\)
0.762156 0.647393i \(-0.224141\pi\)
\(314\) 2.95326 + 12.9391i 0.166662 + 0.730194i
\(315\) 0 0
\(316\) 2.24542 9.83784i 0.126315 0.553422i
\(317\) 27.7501 + 6.33378i 1.55860 + 0.355740i 0.913008 0.407941i \(-0.133753\pi\)
0.645593 + 0.763682i \(0.276610\pi\)
\(318\) 0 0
\(319\) 12.8326 16.0915i 0.718487 0.900954i
\(320\) −0.334111 + 1.46384i −0.0186774 + 0.0818309i
\(321\) 0 0
\(322\) 0.143385 + 3.56674i 0.00799055 + 0.198767i
\(323\) −1.07681 + 0.245776i −0.0599155 + 0.0136753i
\(324\) 0 0
\(325\) 7.96154i 0.441627i
\(326\) 15.3340 3.49989i 0.849274 0.193841i
\(327\) 0 0
\(328\) −1.00307 0.799925i −0.0553855 0.0441685i
\(329\) −11.7716 + 3.18927i −0.648987 + 0.175830i
\(330\) 0 0
\(331\) 2.37205 + 10.3926i 0.130380 + 0.571230i 0.997342 + 0.0728573i \(0.0232118\pi\)
−0.866963 + 0.498373i \(0.833931\pi\)
\(332\) −4.55824 5.71585i −0.250166 0.313698i
\(333\) 0 0
\(334\) −1.71317 1.36621i −0.0937407 0.0747557i
\(335\) −1.93019 + 0.929532i −0.105458 + 0.0507858i
\(336\) 0 0
\(337\) −7.10579 3.42197i −0.387077 0.186406i 0.230216 0.973139i \(-0.426057\pi\)
−0.617293 + 0.786733i \(0.711771\pi\)
\(338\) 1.99204 + 4.13652i 0.108353 + 0.224997i
\(339\) 0 0
\(340\) −0.276824 + 0.133311i −0.0150129 + 0.00722982i
\(341\) 9.85252 + 12.3547i 0.533544 + 0.669043i
\(342\) 0 0
\(343\) −17.4294 + 6.26238i −0.941097 + 0.338137i
\(344\) 8.89989i 0.479850i
\(345\) 0 0
\(346\) 4.64038 + 9.63585i 0.249468 + 0.518027i
\(347\) 24.5003 + 5.59204i 1.31525 + 0.300196i 0.821898 0.569635i \(-0.192916\pi\)
0.493349 + 0.869832i \(0.335773\pi\)
\(348\) 0 0
\(349\) 11.6767 24.2469i 0.625038 1.29791i −0.312465 0.949929i \(-0.601155\pi\)
0.937503 0.347976i \(-0.113131\pi\)
\(350\) 6.66600 + 2.88632i 0.356313 + 0.154280i
\(351\) 0 0
\(352\) −1.34606 + 1.68791i −0.0717454 + 0.0899658i
\(353\) 1.47598 + 0.710796i 0.0785586 + 0.0378318i 0.472751 0.881196i \(-0.343261\pi\)
−0.394192 + 0.919028i \(0.628975\pi\)
\(354\) 0 0
\(355\) 16.0748 3.66896i 0.853161 0.194728i
\(356\) 4.14732 + 5.20058i 0.219808 + 0.275630i
\(357\) 0 0
\(358\) −3.91512 + 4.90941i −0.206921 + 0.259470i
\(359\) −4.20157 + 8.72464i −0.221750 + 0.460469i −0.981930 0.189243i \(-0.939396\pi\)
0.760180 + 0.649713i \(0.225111\pi\)
\(360\) 0 0
\(361\) −10.1333 −0.533329
\(362\) 10.2777 0.540184
\(363\) 0 0
\(364\) 7.66595 0.308176i 0.401805 0.0161528i
\(365\) −10.6239 2.42483i −0.556079 0.126922i
\(366\) 0 0
\(367\) −28.1872 22.4785i −1.47136 1.17337i −0.946725 0.322042i \(-0.895631\pi\)
−0.524634 0.851328i \(-0.675798\pi\)
\(368\) 1.05484 + 0.841207i 0.0549874 + 0.0438510i
\(369\) 0 0
\(370\) −0.621353 0.141820i −0.0323026 0.00737286i
\(371\) 12.3315 16.8061i 0.640219 0.872531i
\(372\) 0 0
\(373\) −25.8009 −1.33592 −0.667959 0.744198i \(-0.732832\pi\)
−0.667959 + 0.744198i \(0.732832\pi\)
\(374\) −0.441783 −0.0228441
\(375\) 0 0
\(376\) −2.00005 + 4.15314i −0.103145 + 0.214182i
\(377\) −17.2364 + 21.6137i −0.887718 + 1.11316i
\(378\) 0 0
\(379\) −15.2588 19.1340i −0.783794 0.982846i −0.999979 0.00649407i \(-0.997933\pi\)
0.216185 0.976352i \(-0.430639\pi\)
\(380\) −7.90109 + 1.80337i −0.405317 + 0.0925110i
\(381\) 0 0
\(382\) −16.1607 7.78261i −0.826856 0.398193i
\(383\) −9.10693 + 11.4197i −0.465342 + 0.583521i −0.958024 0.286689i \(-0.907445\pi\)
0.492682 + 0.870210i \(0.336017\pi\)
\(384\) 0 0
\(385\) −5.61232 6.48509i −0.286030 0.330511i
\(386\) −1.77824 + 3.69255i −0.0905100 + 0.187946i
\(387\) 0 0
\(388\) 17.6454 + 4.02745i 0.895810 + 0.204463i
\(389\) −8.15516 16.9344i −0.413483 0.858606i −0.998855 0.0478415i \(-0.984766\pi\)
0.585372 0.810765i \(-0.300949\pi\)
\(390\) 0 0
\(391\) 0.276088i 0.0139624i
\(392\) −2.52113 + 6.53023i −0.127336 + 0.329826i
\(393\) 0 0
\(394\) 9.20868 + 11.5473i 0.463926 + 0.581745i
\(395\) 13.6508 6.57386i 0.686844 0.330767i
\(396\) 0 0
\(397\) 3.03244 + 6.29693i 0.152194 + 0.316034i 0.963101 0.269142i \(-0.0867400\pi\)
−0.810907 + 0.585175i \(0.801026\pi\)
\(398\) 17.0401 + 8.20609i 0.854144 + 0.411334i
\(399\) 0 0
\(400\) 2.47366 1.19125i 0.123683 0.0595626i
\(401\) 1.40707 + 1.12210i 0.0702658 + 0.0560351i 0.657993 0.753024i \(-0.271406\pi\)
−0.587727 + 0.809059i \(0.699977\pi\)
\(402\) 0 0
\(403\) −13.2336 16.5944i −0.659214 0.826628i
\(404\) 3.42795 + 15.0188i 0.170547 + 0.747214i
\(405\) 0 0
\(406\) −11.8479 22.2673i −0.588000 1.10511i
\(407\) −0.716465 0.571362i −0.0355138 0.0283213i
\(408\) 0 0
\(409\) −1.27232 + 0.290399i −0.0629121 + 0.0143593i −0.253861 0.967241i \(-0.581701\pi\)
0.190949 + 0.981600i \(0.438843\pi\)
\(410\) 1.92637i 0.0951367i
\(411\) 0 0
\(412\) −0.117837 + 0.0268954i −0.00580539 + 0.00132504i
\(413\) 13.2541 11.4704i 0.652194 0.564421i
\(414\) 0 0
\(415\) 2.44264 10.7019i 0.119904 0.525335i
\(416\) 1.80799 2.26715i 0.0886441 0.111156i
\(417\) 0 0
\(418\) −11.3606 2.59299i −0.555667 0.126827i
\(419\) 5.85902 25.6701i 0.286232 1.25406i −0.603419 0.797424i \(-0.706195\pi\)
0.889651 0.456640i \(-0.150947\pi\)
\(420\) 0 0
\(421\) −1.79434 7.86150i −0.0874506 0.383146i 0.912195 0.409756i \(-0.134386\pi\)
−0.999646 + 0.0266096i \(0.991529\pi\)
\(422\) 14.9063i 0.725629i
\(423\) 0 0
\(424\) −1.75316 7.68111i −0.0851412 0.373028i
\(425\) 0.506190 + 0.243768i 0.0245538 + 0.0118245i
\(426\) 0 0
\(427\) −0.568454 + 3.05074i −0.0275094 + 0.147636i
\(428\) 12.9825 10.3532i 0.627532 0.500440i
\(429\) 0 0
\(430\) −10.4476 + 8.33170i −0.503829 + 0.401790i
\(431\) −9.00171 + 18.6923i −0.433597 + 0.900374i 0.563635 + 0.826024i \(0.309402\pi\)
−0.997232 + 0.0743500i \(0.976312\pi\)
\(432\) 0 0
\(433\) −3.33827 6.93198i −0.160427 0.333130i 0.805225 0.592970i \(-0.202045\pi\)
−0.965652 + 0.259840i \(0.916330\pi\)
\(434\) 18.6917 5.06415i 0.897232 0.243087i
\(435\) 0 0
\(436\) −9.81255 + 4.72548i −0.469936 + 0.226309i
\(437\) −1.62046 + 7.09971i −0.0775172 + 0.339625i
\(438\) 0 0
\(439\) 29.7877 23.7549i 1.42169 1.13376i 0.451254 0.892396i \(-0.350977\pi\)
0.970435 0.241363i \(-0.0775946\pi\)
\(440\) −3.24157 −0.154536
\(441\) 0 0
\(442\) 0.593391 0.0282247
\(443\) −12.9541 + 10.3305i −0.615466 + 0.490818i −0.880895 0.473313i \(-0.843058\pi\)
0.265428 + 0.964131i \(0.414487\pi\)
\(444\) 0 0
\(445\) −2.22244 + 9.73713i −0.105354 + 0.461584i
\(446\) 12.7190 6.12515i 0.602262 0.290034i
\(447\) 0 0
\(448\) 1.24277 + 2.33570i 0.0587155 + 0.110352i
\(449\) 7.88953 + 16.3828i 0.372330 + 0.773151i 0.999986 0.00534002i \(-0.00169979\pi\)
−0.627656 + 0.778491i \(0.715986\pi\)
\(450\) 0 0
\(451\) 1.20179 2.49555i 0.0565902 0.117511i
\(452\) 2.73829 2.18372i 0.128798 0.102713i
\(453\) 0 0
\(454\) −12.4545 + 9.93216i −0.584520 + 0.466139i
\(455\) 7.53831 + 8.71059i 0.353401 + 0.408359i
\(456\) 0 0
\(457\) −26.4700 12.7473i −1.23821 0.596292i −0.303887 0.952708i \(-0.598284\pi\)
−0.934327 + 0.356416i \(0.883999\pi\)
\(458\) −3.62508 15.8825i −0.169389 0.742141i
\(459\) 0 0
\(460\) 2.02579i 0.0944527i
\(461\) 0.752767 + 3.29809i 0.0350599 + 0.153607i 0.989428 0.145026i \(-0.0463265\pi\)
−0.954368 + 0.298633i \(0.903469\pi\)
\(462\) 0 0
\(463\) −3.00074 + 13.1471i −0.139456 + 0.610998i 0.856099 + 0.516813i \(0.172882\pi\)
−0.995555 + 0.0941849i \(0.969976\pi\)
\(464\) −9.29440 2.12139i −0.431482 0.0984829i
\(465\) 0 0
\(466\) −4.93631 + 6.18994i −0.228670 + 0.286744i
\(467\) −0.900613 + 3.94584i −0.0416754 + 0.182592i −0.991482 0.130247i \(-0.958423\pi\)
0.949806 + 0.312839i \(0.101280\pi\)
\(468\) 0 0
\(469\) −1.49998 + 3.46423i −0.0692628 + 0.159963i
\(470\) −6.74775 + 1.54013i −0.311251 + 0.0710409i
\(471\) 0 0
\(472\) 6.62508i 0.304944i
\(473\) −18.7324 + 4.27554i −0.861315 + 0.196590i
\(474\) 0 0
\(475\) 11.5861 + 9.23961i 0.531607 + 0.423943i
\(476\) −0.215124 + 0.496831i −0.00986018 + 0.0227722i
\(477\) 0 0
\(478\) −4.53448 19.8668i −0.207402 0.908688i
\(479\) −23.4220 29.3703i −1.07018 1.34196i −0.936394 0.350951i \(-0.885858\pi\)
−0.133784 0.991010i \(-0.542713\pi\)
\(480\) 0 0
\(481\) 0.962335 + 0.767437i 0.0438787 + 0.0349921i
\(482\) −5.69592 + 2.74301i −0.259442 + 0.124941i
\(483\) 0 0
\(484\) 5.71131 + 2.75042i 0.259605 + 0.125019i
\(485\) 11.7911 + 24.4844i 0.535404 + 1.11178i
\(486\) 0 0
\(487\) −24.7132 + 11.9012i −1.11986 + 0.539296i −0.899849 0.436201i \(-0.856324\pi\)
−0.220011 + 0.975497i \(0.570609\pi\)
\(488\) 0.731302 + 0.917023i 0.0331045 + 0.0415117i
\(489\) 0 0
\(490\) −10.0260 + 3.15376i −0.452931 + 0.142472i
\(491\) 8.06621i 0.364023i −0.983296 0.182011i \(-0.941739\pi\)
0.983296 0.182011i \(-0.0582608\pi\)
\(492\) 0 0
\(493\) −0.846439 1.75765i −0.0381217 0.0791605i
\(494\) 15.2593 + 3.48283i 0.686548 + 0.156700i
\(495\) 0 0
\(496\) 3.17582 6.59465i 0.142598 0.296109i
\(497\) 17.1876 23.4244i 0.770971 1.05073i
\(498\) 0 0
\(499\) 2.05876 2.58161i 0.0921629 0.115569i −0.733612 0.679569i \(-0.762167\pi\)
0.825775 + 0.564000i \(0.190738\pi\)
\(500\) 10.4781 + 5.04598i 0.468595 + 0.225663i
\(501\) 0 0
\(502\) 0.845778 0.193043i 0.0377489 0.00861595i
\(503\) −19.4857 24.4343i −0.868825 1.08947i −0.995236 0.0974941i \(-0.968917\pi\)
0.126411 0.991978i \(-0.459654\pi\)
\(504\) 0 0
\(505\) −14.4216 + 18.0841i −0.641751 + 0.804731i
\(506\) −1.26381 + 2.62433i −0.0561833 + 0.116666i
\(507\) 0 0
\(508\) −2.81709 −0.124988
\(509\) −1.19757 −0.0530814 −0.0265407 0.999648i \(-0.508449\pi\)
−0.0265407 + 0.999648i \(0.508449\pi\)
\(510\) 0 0
\(511\) −16.9515 + 9.01950i −0.749891 + 0.398999i
\(512\) 0.974928 + 0.222521i 0.0430861 + 0.00983413i
\(513\) 0 0
\(514\) 1.76639 + 1.40865i 0.0779121 + 0.0621328i
\(515\) −0.141886 0.113151i −0.00625226 0.00498601i
\(516\) 0 0
\(517\) −9.70231 2.21449i −0.426707 0.0973931i
\(518\) −0.991434 + 0.527518i −0.0435611 + 0.0231778i
\(519\) 0 0
\(520\) 4.35399 0.190935
\(521\) 12.2679 0.537468 0.268734 0.963214i \(-0.413395\pi\)
0.268734 + 0.963214i \(0.413395\pi\)
\(522\) 0 0
\(523\) −3.66609 + 7.61271i −0.160307 + 0.332881i −0.965615 0.259976i \(-0.916285\pi\)
0.805308 + 0.592856i \(0.202000\pi\)
\(524\) 3.53745 4.43582i 0.154534 0.193780i
\(525\) 0 0
\(526\) −11.0789 13.8925i −0.483062 0.605741i
\(527\) 1.46025 0.333293i 0.0636096 0.0145185i
\(528\) 0 0
\(529\) −19.0822 9.18952i −0.829662 0.399544i
\(530\) 7.37566 9.24879i 0.320378 0.401742i
\(531\) 0 0
\(532\) −8.44809 + 11.5136i −0.366271 + 0.499177i
\(533\) −1.61421 + 3.35195i −0.0699193 + 0.145189i
\(534\) 0 0
\(535\) 24.3073 + 5.54798i 1.05090 + 0.239860i
\(536\) 0.619077 + 1.28553i 0.0267401 + 0.0555263i
\(537\) 0 0
\(538\) 30.7300i 1.32486i
\(539\) −14.9559 2.16930i −0.644197 0.0934382i
\(540\) 0 0
\(541\) 9.44157 + 11.8394i 0.405925 + 0.509014i 0.942210 0.335023i \(-0.108744\pi\)
−0.536285 + 0.844037i \(0.680173\pi\)
\(542\) −2.49424 + 1.20116i −0.107137 + 0.0515944i
\(543\) 0 0
\(544\) 0.0887865 + 0.184367i 0.00380669 + 0.00790467i
\(545\) −14.7334 7.09521i −0.631108 0.303926i
\(546\) 0 0
\(547\) 17.5398 8.44673i 0.749948 0.361156i −0.0195469 0.999809i \(-0.506222\pi\)
0.769495 + 0.638653i \(0.220508\pi\)
\(548\) −4.28867 3.42010i −0.183203 0.146100i
\(549\) 0 0
\(550\) 3.69569 + 4.63424i 0.157585 + 0.197605i
\(551\) −11.4502 50.1667i −0.487796 2.13717i
\(552\) 0 0
\(553\) 10.6082 24.4998i 0.451107 1.04184i
\(554\) −15.2060 12.1264i −0.646040 0.515199i
\(555\) 0 0
\(556\) 17.6050 4.01823i 0.746619 0.170411i
\(557\) 24.1887i 1.02491i −0.858715 0.512454i \(-0.828736\pi\)
0.858715 0.512454i \(-0.171264\pi\)
\(558\) 0 0
\(559\) 25.1608 5.74279i 1.06419 0.242894i
\(560\) −1.57846 + 3.64549i −0.0667023 + 0.154050i
\(561\) 0 0
\(562\) 5.48040 24.0112i 0.231177 1.01285i
\(563\) 16.6035 20.8202i 0.699756 0.877466i −0.297249 0.954800i \(-0.596069\pi\)
0.997005 + 0.0773339i \(0.0246407\pi\)
\(564\) 0 0
\(565\) 5.12695 + 1.17019i 0.215692 + 0.0492304i
\(566\) −7.13571 + 31.2636i −0.299936 + 1.31411i
\(567\) 0 0
\(568\) −2.44356 10.7059i −0.102530 0.449212i
\(569\) 44.6824i 1.87318i 0.350424 + 0.936591i \(0.386037\pi\)
−0.350424 + 0.936591i \(0.613963\pi\)
\(570\) 0 0
\(571\) −6.67647 29.2515i −0.279402 1.22414i −0.898552 0.438866i \(-0.855380\pi\)
0.619151 0.785272i \(-0.287477\pi\)
\(572\) 5.64044 + 2.71629i 0.235839 + 0.113574i
\(573\) 0 0
\(574\) −2.22130 2.56673i −0.0927152 0.107133i
\(575\) 2.89612 2.30958i 0.120777 0.0963161i
\(576\) 0 0
\(577\) −0.188795 + 0.150559i −0.00785966 + 0.00626787i −0.627412 0.778688i \(-0.715886\pi\)
0.619552 + 0.784956i \(0.287314\pi\)
\(578\) 7.35786 15.2787i 0.306046 0.635512i
\(579\) 0 0
\(580\) −6.21072 12.8967i −0.257886 0.535506i
\(581\) −9.08572 17.0760i −0.376939 0.708431i
\(582\) 0 0
\(583\) 15.3249 7.38008i 0.634692 0.305652i
\(584\) −1.61496 + 7.07560i −0.0668275 + 0.292790i
\(585\) 0 0
\(586\) −19.3727 + 15.4492i −0.800277 + 0.638200i
\(587\) 31.6533 1.30647 0.653235 0.757155i \(-0.273411\pi\)
0.653235 + 0.757155i \(0.273411\pi\)
\(588\) 0 0
\(589\) 39.5072 1.62787
\(590\) 7.77722 6.20213i 0.320183 0.255338i
\(591\) 0 0
\(592\) −0.0944532 + 0.413827i −0.00388200 + 0.0170082i
\(593\) 26.5558 12.7886i 1.09052 0.525165i 0.199851 0.979826i \(-0.435954\pi\)
0.890664 + 0.454661i \(0.150240\pi\)
\(594\) 0 0
\(595\) −0.784623 + 0.212578i −0.0321664 + 0.00871484i
\(596\) 2.76459 + 5.74074i 0.113242 + 0.235150i
\(597\) 0 0
\(598\) 1.69752 3.52493i 0.0694167 0.144145i
\(599\) −28.6362 + 22.8366i −1.17004 + 0.933079i −0.998641 0.0521217i \(-0.983402\pi\)
−0.171404 + 0.985201i \(0.554830\pi\)
\(600\) 0 0
\(601\) −29.5747 + 23.5851i −1.20638 + 0.962054i −0.999866 0.0163895i \(-0.994783\pi\)
−0.206512 + 0.978444i \(0.566211\pi\)
\(602\) −4.31333 + 23.1485i −0.175798 + 0.943461i
\(603\) 0 0
\(604\) −3.73826 1.80025i −0.152108 0.0732512i
\(605\) 2.11796 + 9.27937i 0.0861072 + 0.377260i
\(606\) 0 0
\(607\) 22.4274i 0.910300i −0.890415 0.455150i \(-0.849586\pi\)
0.890415 0.455150i \(-0.150414\pi\)
\(608\) 1.20106 + 5.26220i 0.0487095 + 0.213410i
\(609\) 0 0
\(610\) −0.391884 + 1.71696i −0.0158669 + 0.0695176i
\(611\) 13.0319 + 2.97444i 0.527213 + 0.120333i
\(612\) 0 0
\(613\) 1.63843 2.05453i 0.0661757 0.0829817i −0.747642 0.664102i \(-0.768814\pi\)
0.813818 + 0.581120i \(0.197385\pi\)
\(614\) −0.877540 + 3.84476i −0.0354146 + 0.155162i
\(615\) 0 0
\(616\) −4.31913 + 3.73785i −0.174023 + 0.150602i
\(617\) 42.2730 9.64854i 1.70185 0.388436i 0.742319 0.670046i \(-0.233726\pi\)
0.959529 + 0.281610i \(0.0908686\pi\)
\(618\) 0 0
\(619\) 3.81960i 0.153523i 0.997049 + 0.0767613i \(0.0244580\pi\)
−0.997049 + 0.0767613i \(0.975542\pi\)
\(620\) 10.7146 2.44553i 0.430307 0.0982148i
\(621\) 0 0
\(622\) −5.10664 4.07241i −0.204758 0.163289i
\(623\) 8.26666 + 15.5366i 0.331197 + 0.622461i
\(624\) 0 0
\(625\) 0.830930 + 3.64054i 0.0332372 + 0.145622i
\(626\) −14.2824 17.9095i −0.570838 0.715808i
\(627\) 0 0
\(628\) 10.3763 + 8.27484i 0.414060 + 0.330202i
\(629\) −0.0782581 + 0.0376871i −0.00312035 + 0.00150268i
\(630\) 0 0
\(631\) −1.92471 0.926893i −0.0766216 0.0368990i 0.395180 0.918603i \(-0.370682\pi\)
−0.471802 + 0.881704i \(0.656396\pi\)
\(632\) −4.37825 9.09153i −0.174157 0.361642i
\(633\) 0 0
\(634\) 25.6449 12.3500i 1.01849 0.490479i
\(635\) −2.63724 3.30699i −0.104656 0.131234i
\(636\) 0 0
\(637\) 20.0884 + 2.91374i 0.795930 + 0.115446i
\(638\) 20.5819i 0.814844i
\(639\) 0 0
\(640\) 0.651468 + 1.35279i 0.0257515 + 0.0534736i
\(641\) −38.5724 8.80389i −1.52352 0.347733i −0.622884 0.782314i \(-0.714039\pi\)
−0.900632 + 0.434582i \(0.856896\pi\)
\(642\) 0 0
\(643\) 3.88449 8.06622i 0.153189 0.318101i −0.810224 0.586120i \(-0.800655\pi\)
0.963414 + 0.268019i \(0.0863691\pi\)
\(644\) 2.33593 + 2.69919i 0.0920486 + 0.106363i
\(645\) 0 0
\(646\) −0.688648 + 0.863537i −0.0270945 + 0.0339754i
\(647\) 21.3106 + 10.2626i 0.837805 + 0.403466i 0.803036 0.595930i \(-0.203216\pi\)
0.0347683 + 0.999395i \(0.488931\pi\)
\(648\) 0 0
\(649\) 13.9444 3.18272i 0.547365 0.124933i
\(650\) −4.96394 6.22459i −0.194702 0.244148i
\(651\) 0 0
\(652\) 9.80648 12.2969i 0.384051 0.481585i
\(653\) 3.61275 7.50196i 0.141378 0.293574i −0.818242 0.574874i \(-0.805051\pi\)
0.959620 + 0.281299i \(0.0907654\pi\)
\(654\) 0 0
\(655\) 8.51885 0.332859
\(656\) −1.28298 −0.0500920
\(657\) 0 0
\(658\) −7.21490 + 9.83292i −0.281266 + 0.383327i
\(659\) 3.71159 + 0.847146i 0.144583 + 0.0330001i 0.294200 0.955744i \(-0.404947\pi\)
−0.149617 + 0.988744i \(0.547804\pi\)
\(660\) 0 0
\(661\) −17.1526 13.6787i −0.667159 0.532041i 0.230311 0.973117i \(-0.426026\pi\)
−0.897470 + 0.441076i \(0.854597\pi\)
\(662\) 8.33424 + 6.64633i 0.323919 + 0.258317i
\(663\) 0 0
\(664\) −7.12755 1.62682i −0.276603 0.0631328i
\(665\) −21.4246 + 0.861282i −0.830810 + 0.0333991i
\(666\) 0 0
\(667\) −12.8624 −0.498035
\(668\) −2.19123 −0.0847813
\(669\) 0 0
\(670\) −0.929532 + 1.93019i −0.0359110 + 0.0745699i
\(671\) −1.57882 + 1.97978i −0.0609496 + 0.0764284i
\(672\) 0 0
\(673\) −7.63064 9.56852i −0.294139 0.368839i 0.612700 0.790316i \(-0.290083\pi\)
−0.906839 + 0.421476i \(0.861512\pi\)
\(674\) −7.68909 + 1.75498i −0.296173 + 0.0675995i
\(675\) 0 0
\(676\) 4.13652 + 1.99204i 0.159097 + 0.0766170i
\(677\) 14.0442 17.6109i 0.539764 0.676843i −0.434910 0.900474i \(-0.643220\pi\)
0.974674 + 0.223631i \(0.0717911\pi\)
\(678\) 0 0
\(679\) 43.9435 + 19.0272i 1.68640 + 0.730196i
\(680\) −0.133311 + 0.276824i −0.00511225 + 0.0106157i
\(681\) 0 0
\(682\) 15.4060 + 3.51632i 0.589927 + 0.134647i
\(683\) 20.5392 + 42.6501i 0.785910 + 1.63196i 0.774952 + 0.632020i \(0.217774\pi\)
0.0109579 + 0.999940i \(0.496512\pi\)
\(684\) 0 0
\(685\) 8.23625i 0.314691i
\(686\) −9.72229 + 15.7632i −0.371199 + 0.601840i
\(687\) 0 0
\(688\) 5.54899 + 6.95821i 0.211553 + 0.265279i
\(689\) −20.5840 + 9.91271i −0.784186 + 0.377644i
\(690\) 0 0
\(691\) 8.05414 + 16.7246i 0.306394 + 0.636233i 0.996136 0.0878215i \(-0.0279905\pi\)
−0.689742 + 0.724055i \(0.742276\pi\)
\(692\) 9.63585 + 4.64038i 0.366300 + 0.176401i
\(693\) 0 0
\(694\) 22.6417 10.9037i 0.859467 0.413898i
\(695\) 21.1981 + 16.9049i 0.804090 + 0.641240i
\(696\) 0 0
\(697\) −0.163690 0.205261i −0.00620021 0.00777482i
\(698\) −5.98848 26.2373i −0.226667 0.993095i
\(699\) 0 0
\(700\) 7.01128 1.89957i 0.265002 0.0717969i
\(701\) −22.2361 17.7327i −0.839847 0.669756i 0.106000 0.994366i \(-0.466195\pi\)
−0.945848 + 0.324610i \(0.894767\pi\)
\(702\) 0 0
\(703\) −2.23364 + 0.509813i −0.0842433 + 0.0192280i
\(704\) 2.15892i 0.0813672i
\(705\) 0 0
\(706\) 1.59714 0.364538i 0.0601093 0.0137196i
\(707\) 1.63717 + 40.7250i 0.0615721 + 1.53162i
\(708\) 0 0
\(709\) −8.81551 + 38.6233i −0.331073 + 1.45053i 0.485983 + 0.873968i \(0.338462\pi\)
−0.817056 + 0.576558i \(0.804395\pi\)
\(710\) 10.2802 12.8910i 0.385809 0.483790i
\(711\) 0 0
\(712\) 6.48501 + 1.48016i 0.243036 + 0.0554714i
\(713\) 2.19749 9.62783i 0.0822966 0.360565i
\(714\) 0 0
\(715\) 2.09167 + 9.16422i 0.0782242 + 0.342723i
\(716\) 6.27937i 0.234671i
\(717\) 0 0
\(718\) 2.15481 + 9.44084i 0.0804168 + 0.352329i
\(719\) −23.6541 11.3912i −0.882148 0.424820i −0.0627396 0.998030i \(-0.519984\pi\)
−0.819409 + 0.573210i \(0.805698\pi\)
\(720\) 0 0
\(721\) −0.319526 + 0.0128451i −0.0118998 + 0.000478378i
\(722\) −7.92250 + 6.31798i −0.294845 + 0.235131i
\(723\) 0 0
\(724\) 8.03542 6.40804i 0.298634 0.238153i
\(725\) −11.3567 + 23.5824i −0.421777 + 0.875830i
\(726\) 0 0
\(727\) −17.3659 36.0607i −0.644066 1.33742i −0.925832 0.377934i \(-0.876635\pi\)
0.281766 0.959483i \(-0.409080\pi\)
\(728\) 5.80133 5.02058i 0.215012 0.186075i
\(729\) 0 0
\(730\) −9.81794 + 4.72807i −0.363378 + 0.174994i
\(731\) −0.405255 + 1.77554i −0.0149889 + 0.0656707i
\(732\) 0 0
\(733\) −19.7378 + 15.7404i −0.729032 + 0.581384i −0.916094 0.400964i \(-0.868675\pi\)
0.187061 + 0.982348i \(0.440104\pi\)
\(734\) −36.0528 −1.33073
\(735\) 0 0
\(736\) 1.34919 0.0497319
\(737\) −2.40835 + 1.92060i −0.0887128 + 0.0707461i
\(738\) 0 0
\(739\) −9.00127 + 39.4372i −0.331117 + 1.45072i 0.485854 + 0.874040i \(0.338509\pi\)
−0.816971 + 0.576679i \(0.804348\pi\)
\(740\) −0.574216 + 0.276528i −0.0211086 + 0.0101654i
\(741\) 0 0
\(742\) −0.837303 20.8281i −0.0307383 0.764624i
\(743\) −1.11411 2.31348i −0.0408729 0.0848734i 0.879532 0.475839i \(-0.157855\pi\)
−0.920405 + 0.390965i \(0.872141\pi\)
\(744\) 0 0
\(745\) −4.15099 + 8.61961i −0.152080 + 0.315798i
\(746\) −20.1719 + 16.0866i −0.738547 + 0.588972i
\(747\) 0 0
\(748\) −0.345400 + 0.275447i −0.0126291 + 0.0100714i
\(749\) 38.7849 20.6365i 1.41717 0.754041i
\(750\) 0 0
\(751\) −7.83219 3.77178i −0.285801 0.137634i 0.285491 0.958381i \(-0.407843\pi\)
−0.571292 + 0.820747i \(0.693558\pi\)
\(752\) 1.02574 + 4.49406i 0.0374049 + 0.163882i
\(753\) 0 0
\(754\) 27.6450i 1.00677i
\(755\) −1.38628 6.07368i −0.0504518 0.221044i
\(756\) 0 0
\(757\) −9.55538 + 41.8649i −0.347296 + 1.52160i 0.435995 + 0.899949i \(0.356397\pi\)
−0.783291 + 0.621655i \(0.786460\pi\)
\(758\) −23.8597 5.44582i −0.866623 0.197801i
\(759\) 0 0
\(760\) −5.05294 + 6.33618i −0.183289 + 0.229837i
\(761\) −7.85501 + 34.4150i −0.284744 + 1.24754i 0.606890 + 0.794786i \(0.292417\pi\)
−0.891633 + 0.452758i \(0.850440\pi\)
\(762\) 0 0
\(763\) −27.8125 + 7.53524i −1.00688 + 0.272794i
\(764\) −17.4874 + 3.99138i −0.632670 + 0.144403i
\(765\) 0 0
\(766\) 14.6064i 0.527750i
\(767\) −18.7297 + 4.27494i −0.676291 + 0.154359i
\(768\) 0 0
\(769\) 15.1641 + 12.0929i 0.546831 + 0.436083i 0.857536 0.514423i \(-0.171994\pi\)
−0.310706 + 0.950506i \(0.600565\pi\)
\(770\) −8.43128 1.57103i −0.303842 0.0566159i
\(771\) 0 0
\(772\) 0.911985 + 3.99567i 0.0328231 + 0.143807i
\(773\) −33.2681 41.7169i −1.19657 1.50045i −0.818335 0.574742i \(-0.805102\pi\)
−0.378236 0.925709i \(-0.623469\pi\)
\(774\) 0 0
\(775\) −15.7118 12.5297i −0.564384 0.450081i
\(776\) 16.3068 7.85295i 0.585381 0.281904i
\(777\) 0 0
\(778\) −16.9344 8.15516i −0.607126 0.292377i
\(779\) −3.00461 6.23914i −0.107651 0.223540i
\(780\) 0 0
\(781\) 21.3598 10.2864i 0.764316 0.368075i
\(782\) 0.172138 + 0.215854i 0.00615564 + 0.00771892i
\(783\) 0 0
\(784\) 2.10043 + 6.67744i 0.0750154 + 0.238480i
\(785\) 19.9274i 0.711239i
\(786\) 0 0
\(787\) 22.0866 + 45.8633i 0.787303 + 1.63485i 0.772545 + 0.634960i \(0.218983\pi\)
0.0147578 + 0.999891i \(0.495302\pi\)
\(788\) 14.3993 + 3.28654i 0.512953 + 0.117078i
\(789\) 0 0
\(790\) 6.57386 13.6508i 0.233887 0.485672i
\(791\) 8.18059 4.35270i 0.290868 0.154764i
\(792\) 0 0
\(793\) 2.12063 2.65918i 0.0753056 0.0944303i
\(794\) 6.29693 + 3.03244i 0.223470 + 0.107617i
\(795\) 0 0
\(796\) 18.4389 4.20856i 0.653550 0.149169i
\(797\) −7.93893 9.95510i −0.281211 0.352628i 0.621086 0.783743i \(-0.286692\pi\)
−0.902297 + 0.431115i \(0.858120\pi\)
\(798\) 0 0
\(799\) −0.588125 + 0.737485i −0.0208064 + 0.0260903i
\(800\) 1.19125 2.47366i 0.0421171 0.0874570i
\(801\) 0 0
\(802\) 1.79971 0.0635500
\(803\) −15.6685 −0.552928
\(804\) 0 0
\(805\) −0.981796 + 5.26904i −0.0346038 + 0.185709i
\(806\) −20.6929 4.72303i −0.728878 0.166362i
\(807\) 0 0
\(808\) 12.0442 + 9.60489i 0.423712 + 0.337899i
\(809\) 33.1701 + 26.4523i 1.16620 + 0.930013i 0.998441 0.0558151i \(-0.0177757\pi\)
0.167758 + 0.985828i \(0.446347\pi\)
\(810\) 0 0
\(811\) 34.7241 + 7.92555i 1.21933 + 0.278304i 0.783308 0.621633i \(-0.213531\pi\)
0.436020 + 0.899937i \(0.356388\pi\)
\(812\) −23.1465 10.0222i −0.812281 0.351711i
\(813\) 0 0
\(814\) −0.916393 −0.0321196
\(815\) 23.6159 0.827228
\(816\) 0 0
\(817\) −20.8426 + 43.2801i −0.729191 + 1.51418i
\(818\) −0.813679 + 1.02032i −0.0284496 + 0.0356747i
\(819\) 0 0
\(820\) −1.20107 1.50610i −0.0419433 0.0525952i
\(821\) −14.5214 + 3.31441i −0.506800 + 0.115674i −0.468273 0.883584i \(-0.655124\pi\)
−0.0385270 + 0.999258i \(0.512267\pi\)
\(822\) 0 0
\(823\) 12.7383 + 6.13444i 0.444029 + 0.213833i 0.642519 0.766270i \(-0.277889\pi\)
−0.198490 + 0.980103i \(0.563604\pi\)
\(824\) −0.0753593 + 0.0944976i −0.00262527 + 0.00329198i
\(825\) 0 0
\(826\) 3.21084 17.2317i 0.111720 0.599569i
\(827\) 6.99442 14.5241i 0.243220 0.505051i −0.743246 0.669018i \(-0.766715\pi\)
0.986466 + 0.163967i \(0.0524291\pi\)
\(828\) 0 0
\(829\) 31.8673 + 7.27351i 1.10680 + 0.252619i 0.736597 0.676332i \(-0.236432\pi\)
0.370201 + 0.928952i \(0.379289\pi\)
\(830\) −4.76279 9.89003i −0.165319 0.343288i
\(831\) 0 0
\(832\) 2.89980i 0.100532i
\(833\) −0.800322 + 1.18799i −0.0277295 + 0.0411614i
\(834\) 0 0
\(835\) −2.05134 2.57230i −0.0709895 0.0890181i
\(836\) −10.4988 + 5.05596i −0.363109 + 0.174864i
\(837\) 0 0
\(838\) −11.4243 23.7227i −0.394644 0.819487i
\(839\) 11.4472 + 5.51269i 0.395202 + 0.190319i 0.620921 0.783873i \(-0.286759\pi\)
−0.225719 + 0.974192i \(0.572473\pi\)
\(840\) 0 0
\(841\) 55.7575 26.8514i 1.92267 0.925910i
\(842\) −6.30443 5.02762i −0.217265 0.173263i
\(843\) 0 0
\(844\) −9.29395 11.6542i −0.319911 0.401155i
\(845\) 1.53397 + 6.72074i 0.0527700 + 0.231201i
\(846\) 0 0
\(847\) 13.5220 + 9.92179i 0.464623 + 0.340917i
\(848\) −6.15977 4.91226i −0.211528 0.168688i
\(849\) 0 0
\(850\) 0.547742 0.125019i 0.0187874 0.00428810i
\(851\) 0.572690i 0.0196316i
\(852\) 0 0
\(853\) −43.9508 + 10.0315i −1.50485 + 0.343472i −0.893924 0.448218i \(-0.852059\pi\)
−0.610924 + 0.791690i \(0.709202\pi\)
\(854\) 1.45767 + 2.73959i 0.0498804 + 0.0937468i
\(855\) 0 0
\(856\) 3.69501 16.1889i 0.126293 0.553325i
\(857\) −2.57480 + 3.22870i −0.0879534 + 0.110290i −0.823861 0.566792i \(-0.808184\pi\)
0.735908 + 0.677082i \(0.236756\pi\)
\(858\) 0 0
\(859\) 22.1087 + 5.04617i 0.754339 + 0.172173i 0.582364 0.812928i \(-0.302128\pi\)
0.171975 + 0.985101i \(0.444985\pi\)
\(860\) −2.97355 + 13.0280i −0.101397 + 0.444250i
\(861\) 0 0
\(862\) 4.61660 + 20.2267i 0.157242 + 0.688923i
\(863\) 34.9443i 1.18952i −0.803905 0.594758i \(-0.797248\pi\)
0.803905 0.594758i \(-0.202752\pi\)
\(864\) 0 0
\(865\) 3.57331 + 15.6557i 0.121496 + 0.532310i
\(866\) −6.93198 3.33827i −0.235558 0.113439i
\(867\) 0 0
\(868\) 11.4563 15.6134i 0.388854 0.529954i
\(869\) 17.0324 13.5829i 0.577785 0.460768i
\(870\) 0 0
\(871\) 3.23483 2.57969i 0.109608 0.0874096i
\(872\) −4.72548 + 9.81255i −0.160025 + 0.332295i
\(873\) 0 0
\(874\) 3.15967 + 6.56112i 0.106877 + 0.221933i
\(875\) 24.8078 + 18.2027i 0.838657 + 0.615364i
\(876\) 0 0
\(877\) −8.46027 + 4.07425i −0.285683 + 0.137578i −0.571238 0.820785i \(-0.693537\pi\)
0.285554 + 0.958362i \(0.407822\pi\)
\(878\) 8.47802 37.1446i 0.286119 1.25357i
\(879\) 0 0
\(880\) −2.53436 + 2.02109i −0.0854334 + 0.0681308i
\(881\) 14.3251 0.482624 0.241312 0.970448i \(-0.422422\pi\)
0.241312 + 0.970448i \(0.422422\pi\)
\(882\) 0 0
\(883\) −18.7968 −0.632564 −0.316282 0.948665i \(-0.602435\pi\)
−0.316282 + 0.948665i \(0.602435\pi\)
\(884\) 0.463932 0.369973i 0.0156037 0.0124435i
\(885\) 0 0
\(886\) −3.68692 + 16.1535i −0.123865 + 0.542686i
\(887\) −9.47248 + 4.56170i −0.318055 + 0.153167i −0.586099 0.810240i \(-0.699337\pi\)
0.268044 + 0.963407i \(0.413623\pi\)
\(888\) 0 0
\(889\) −7.32720 1.36530i −0.245746 0.0457907i
\(890\) 4.33343 + 8.99846i 0.145257 + 0.301629i
\(891\) 0 0
\(892\) 6.12515 12.7190i 0.205085 0.425864i
\(893\) −19.4524 + 15.5128i −0.650951 + 0.519116i
\(894\) 0 0
\(895\) −7.37138 + 5.87848i −0.246398 + 0.196496i
\(896\) 2.42793 + 1.05127i 0.0811113 + 0.0351205i
\(897\) 0 0
\(898\) 16.3828 + 7.88953i 0.546700 + 0.263277i
\(899\) 15.5275 + 68.0305i 0.517872 + 2.26894i
\(900\) 0 0
\(901\) 1.61222i 0.0537109i
\(902\) −0.616349 2.70040i −0.0205222 0.0899136i
\(903\) 0 0
\(904\) 0.779359 3.41459i 0.0259211 0.113568i
\(905\) 15.0449 + 3.43389i 0.500108 + 0.114146i
\(906\) 0 0
\(907\) −20.5577 + 25.7785i −0.682607 + 0.855962i −0.995591 0.0937965i \(-0.970100\pi\)
0.312985 + 0.949758i \(0.398671\pi\)
\(908\) −3.54475 + 15.5306i −0.117637 + 0.515399i
\(909\) 0 0
\(910\) 11.3247 + 2.11016i 0.375409 + 0.0699511i
\(911\) −33.9627 + 7.75176i −1.12523 + 0.256827i −0.744346 0.667794i \(-0.767239\pi\)
−0.380888 + 0.924621i \(0.624382\pi\)
\(912\) 0 0
\(913\) 15.7835i 0.522358i
\(914\) −28.6429 + 6.53755i −0.947422 + 0.216243i
\(915\) 0 0
\(916\) −12.7368 10.1572i −0.420835 0.335605i
\(917\) 11.3507 9.82308i 0.374832 0.324387i
\(918\) 0 0
\(919\) 1.75297 + 7.68026i 0.0578252 + 0.253349i 0.995576 0.0939603i \(-0.0299527\pi\)
−0.937751 + 0.347309i \(0.887096\pi\)
\(920\) 1.26306 + 1.58382i 0.0416417 + 0.0522171i
\(921\) 0 0
\(922\) 2.64486 + 2.10921i 0.0871039 + 0.0694630i
\(923\) −28.6899 + 13.8163i −0.944341 + 0.454771i
\(924\) 0 0
\(925\) 1.04999 + 0.505649i 0.0345235 + 0.0166256i
\(926\) 5.85101 + 12.1497i 0.192276 + 0.399265i
\(927\) 0 0
\(928\) −8.58932 + 4.13640i −0.281958 + 0.135784i
\(929\) −3.25281 4.07890i −0.106721 0.133824i 0.725602 0.688114i \(-0.241561\pi\)
−0.832324 + 0.554290i \(0.812990\pi\)
\(930\) 0 0
\(931\) −27.5534 + 25.8523i −0.903026 + 0.847274i
\(932\) 7.91723i 0.259338i
\(933\) 0 0
\(934\) 1.75607 + 3.64651i 0.0574602 + 0.119317i
\(935\) −0.646698 0.147605i −0.0211493 0.00482719i
\(936\) 0 0
\(937\) 14.3858 29.8725i 0.469964 0.975891i −0.522418 0.852690i \(-0.674970\pi\)
0.992382 0.123201i \(-0.0393160\pi\)
\(938\) 0.987179 + 3.64367i 0.0322325 + 0.118970i
\(939\) 0 0
\(940\) −4.31535 + 5.41128i −0.140751 + 0.176496i
\(941\) 46.1563 + 22.2277i 1.50465 + 0.724602i 0.991058 0.133431i \(-0.0425994\pi\)
0.513594 + 0.858033i \(0.328314\pi\)
\(942\) 0 0
\(943\) −1.68759 + 0.385181i −0.0549554 + 0.0125432i
\(944\) −4.13067 5.17970i −0.134442 0.168585i
\(945\) 0 0
\(946\) −11.9798 + 15.0222i −0.389497 + 0.488414i
\(947\) −9.74277 + 20.2311i −0.316598 + 0.657422i −0.997164 0.0752651i \(-0.976020\pi\)
0.680566 + 0.732687i \(0.261734\pi\)
\(948\) 0 0
\(949\) 21.0455 0.683164
\(950\) 14.8192 0.480798
\(951\) 0 0
\(952\) 0.141579 + 0.522566i 0.00458859 + 0.0169365i
\(953\) −37.7369 8.61320i −1.22242 0.279009i −0.437848 0.899049i \(-0.644259\pi\)
−0.784570 + 0.620040i \(0.787116\pi\)
\(954\) 0 0
\(955\) −21.0564 16.7919i −0.681370 0.543375i
\(956\) −15.9320 12.7053i −0.515277 0.410919i
\(957\) 0 0
\(958\) −36.6241 8.35921i −1.18327 0.270074i
\(959\) −9.49721 10.9741i −0.306681 0.354373i
\(960\) 0 0
\(961\) −22.5753 −0.728235
\(962\) 1.23087 0.0396849
\(963\) 0 0
\(964\) −2.74301 + 5.69592i −0.0883465 + 0.183453i
\(965\) −3.83677 + 4.81116i −0.123510 + 0.154877i
\(966\) 0 0
\(967\) −1.35041 1.69337i −0.0434264 0.0544550i 0.759644 0.650339i \(-0.225373\pi\)
−0.803070 + 0.595884i \(0.796802\pi\)
\(968\) 6.18015 1.41058i 0.198637 0.0453377i
\(969\) 0 0
\(970\) 24.4844 + 11.7911i 0.786146 + 0.378588i
\(971\) 4.67261 5.85927i 0.149951 0.188033i −0.701182 0.712982i \(-0.747344\pi\)
0.851134 + 0.524949i \(0.175916\pi\)
\(972\) 0 0
\(973\) 47.7378 1.91909i 1.53040 0.0615231i
\(974\) −11.9012 + 24.7132i −0.381340 + 0.791860i
\(975\) 0 0
\(976\) 1.14351 + 0.260999i 0.0366028 + 0.00835436i
\(977\) −18.1863 37.7643i −0.581832 1.20819i −0.959359 0.282188i \(-0.908940\pi\)
0.377527 0.925998i \(-0.376774\pi\)
\(978\) 0 0
\(979\) 14.3607i 0.458968i
\(980\) −5.87234 + 8.71685i −0.187585 + 0.278449i
\(981\) 0 0
\(982\) −5.02920 6.30642i −0.160488 0.201246i
\(983\) −24.5500 + 11.8227i −0.783024 + 0.377084i −0.782289 0.622915i \(-0.785948\pi\)
−0.000734510 1.00000i \(0.500234\pi\)
\(984\) 0 0
\(985\) 9.62191 + 19.9801i 0.306579 + 0.636619i
\(986\) −1.75765 0.846439i −0.0559749 0.0269561i
\(987\) 0 0
\(988\) 14.1017 6.79102i 0.448635 0.216051i
\(989\) 9.38796 + 7.48665i 0.298520 + 0.238062i
\(990\) 0 0
\(991\) −11.0028 13.7971i −0.349515 0.438279i 0.575734 0.817637i \(-0.304716\pi\)
−0.925250 + 0.379358i \(0.876145\pi\)
\(992\) −1.62874 7.13600i −0.0517127 0.226568i
\(993\) 0 0
\(994\) −1.16703 29.0303i −0.0370161 0.920784i
\(995\) 22.2022 + 17.7057i 0.703857 + 0.561307i
\(996\) 0 0
\(997\) 27.5656 6.29167i 0.873012 0.199259i 0.237535 0.971379i \(-0.423661\pi\)
0.635477 + 0.772120i \(0.280803\pi\)
\(998\) 3.30200i 0.104523i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.v.a.629.14 yes 96
3.2 odd 2 inner 882.2.v.a.629.3 yes 96
49.6 odd 14 inner 882.2.v.a.251.3 96
147.104 even 14 inner 882.2.v.a.251.14 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.v.a.251.3 96 49.6 odd 14 inner
882.2.v.a.251.14 yes 96 147.104 even 14 inner
882.2.v.a.629.3 yes 96 3.2 odd 2 inner
882.2.v.a.629.14 yes 96 1.1 even 1 trivial