Properties

Label 882.2.v.a.251.14
Level $882$
Weight $2$
Character 882.251
Analytic conductor $7.043$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(125,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([7, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.125");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.v (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 251.14
Character \(\chi\) \(=\) 882.251
Dual form 882.2.v.a.629.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.781831 + 0.623490i) q^{2} +(0.222521 + 0.974928i) q^{4} +(1.35279 + 0.651468i) q^{5} +(1.05127 + 2.42793i) q^{7} +(-0.433884 + 0.900969i) q^{8} +(0.651468 + 1.35279i) q^{10} +(1.68791 + 1.34606i) q^{11} +(-2.26715 - 1.80799i) q^{13} +(-0.691870 + 2.55369i) q^{14} +(-0.900969 + 0.433884i) q^{16} +(-0.0455349 + 0.199501i) q^{17} +5.39752i q^{19} +(-0.334111 + 1.46384i) q^{20} +(0.480404 + 2.10479i) q^{22} +(-1.31536 + 0.300223i) q^{23} +(-1.71182 - 2.14656i) q^{25} +(-0.645265 - 2.82709i) q^{26} +(-2.13312 + 1.56518i) q^{28} +(9.29440 + 2.12139i) q^{29} -7.31951i q^{31} +(-0.974928 - 0.222521i) q^{32} +(-0.159988 + 0.127586i) q^{34} +(-0.159570 + 3.96934i) q^{35} +(-0.0944532 + 0.413827i) q^{37} +(-3.36530 + 4.21995i) q^{38} +(-1.17391 + 0.936158i) q^{40} +(1.15593 + 0.556665i) q^{41} +(-8.01852 + 3.86152i) q^{43} +(-0.936719 + 1.94512i) q^{44} +(-1.21558 - 0.585392i) q^{46} +(-2.87406 + 3.60396i) q^{47} +(-4.78966 + 5.10482i) q^{49} -2.74555i q^{50} +(1.25817 - 2.61263i) q^{52} +(7.68111 - 1.75316i) q^{53} +(1.40647 + 2.92056i) q^{55} +(-2.64362 - 0.106275i) q^{56} +(5.94399 + 7.45353i) q^{58} +(5.96899 - 2.87452i) q^{59} +(-1.14351 - 0.260999i) q^{61} +(4.56364 - 5.72263i) q^{62} +(-0.623490 - 0.781831i) q^{64} +(-1.88912 - 3.92281i) q^{65} -1.42683 q^{67} -0.204632 q^{68} +(-2.59960 + 3.00386i) q^{70} +(10.7059 - 2.44356i) q^{71} +(-5.67419 + 4.52502i) q^{73} +(-0.331863 + 0.264652i) q^{74} +(-5.26220 + 1.20106i) q^{76} +(-1.49369 + 5.51320i) q^{77} +10.0908 q^{79} -1.50148 q^{80} +(0.556665 + 1.15593i) q^{82} +(4.55824 + 5.71585i) q^{83} +(-0.191568 + 0.240219i) q^{85} +(-8.67675 - 1.98041i) q^{86} +(-1.94512 + 0.936719i) q^{88} +(-4.14732 - 5.20058i) q^{89} +(2.00628 - 7.40517i) q^{91} +(-0.585392 - 1.21558i) q^{92} +(-4.49406 + 1.02574i) q^{94} +(-3.51632 + 7.30170i) q^{95} -18.0992i q^{97} +(-6.92751 + 1.00481i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 16 q^{4} - 16 q^{16} + 20 q^{22} - 8 q^{25} + 76 q^{37} + 28 q^{40} - 8 q^{43} + 112 q^{49} + 28 q^{52} + 28 q^{55} + 20 q^{58} + 84 q^{61} + 16 q^{64} - 8 q^{67} + 28 q^{70} + 112 q^{85} + 8 q^{88}+ \cdots - 56 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{9}{14}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.781831 + 0.623490i 0.552838 + 0.440874i
\(3\) 0 0
\(4\) 0.222521 + 0.974928i 0.111260 + 0.487464i
\(5\) 1.35279 + 0.651468i 0.604985 + 0.291345i 0.711191 0.702999i \(-0.248156\pi\)
−0.106206 + 0.994344i \(0.533870\pi\)
\(6\) 0 0
\(7\) 1.05127 + 2.42793i 0.397343 + 0.917670i
\(8\) −0.433884 + 0.900969i −0.153401 + 0.318541i
\(9\) 0 0
\(10\) 0.651468 + 1.35279i 0.206012 + 0.427789i
\(11\) 1.68791 + 1.34606i 0.508924 + 0.405853i 0.844004 0.536336i \(-0.180192\pi\)
−0.335081 + 0.942189i \(0.608764\pi\)
\(12\) 0 0
\(13\) −2.26715 1.80799i −0.628795 0.501447i 0.256459 0.966555i \(-0.417444\pi\)
−0.885254 + 0.465108i \(0.846015\pi\)
\(14\) −0.691870 + 2.55369i −0.184910 + 0.682501i
\(15\) 0 0
\(16\) −0.900969 + 0.433884i −0.225242 + 0.108471i
\(17\) −0.0455349 + 0.199501i −0.0110438 + 0.0483862i −0.980150 0.198259i \(-0.936471\pi\)
0.969106 + 0.246646i \(0.0793283\pi\)
\(18\) 0 0
\(19\) 5.39752i 1.23828i 0.785282 + 0.619138i \(0.212518\pi\)
−0.785282 + 0.619138i \(0.787482\pi\)
\(20\) −0.334111 + 1.46384i −0.0747095 + 0.327324i
\(21\) 0 0
\(22\) 0.480404 + 2.10479i 0.102422 + 0.448742i
\(23\) −1.31536 + 0.300223i −0.274272 + 0.0626009i −0.357445 0.933934i \(-0.616352\pi\)
0.0831723 + 0.996535i \(0.473495\pi\)
\(24\) 0 0
\(25\) −1.71182 2.14656i −0.342365 0.429312i
\(26\) −0.645265 2.82709i −0.126547 0.554438i
\(27\) 0 0
\(28\) −2.13312 + 1.56518i −0.403122 + 0.295791i
\(29\) 9.29440 + 2.12139i 1.72593 + 0.393931i 0.966501 0.256663i \(-0.0826229\pi\)
0.759426 + 0.650594i \(0.225480\pi\)
\(30\) 0 0
\(31\) 7.31951i 1.31462i −0.753619 0.657312i \(-0.771694\pi\)
0.753619 0.657312i \(-0.228306\pi\)
\(32\) −0.974928 0.222521i −0.172345 0.0393365i
\(33\) 0 0
\(34\) −0.159988 + 0.127586i −0.0274377 + 0.0218808i
\(35\) −0.159570 + 3.96934i −0.0269722 + 0.670941i
\(36\) 0 0
\(37\) −0.0944532 + 0.413827i −0.0155280 + 0.0680327i −0.982098 0.188369i \(-0.939680\pi\)
0.966570 + 0.256402i \(0.0825370\pi\)
\(38\) −3.36530 + 4.21995i −0.545924 + 0.684567i
\(39\) 0 0
\(40\) −1.17391 + 0.936158i −0.185611 + 0.148020i
\(41\) 1.15593 + 0.556665i 0.180525 + 0.0869364i 0.521963 0.852968i \(-0.325200\pi\)
−0.341438 + 0.939904i \(0.610914\pi\)
\(42\) 0 0
\(43\) −8.01852 + 3.86152i −1.22281 + 0.588876i −0.930094 0.367323i \(-0.880274\pi\)
−0.292719 + 0.956198i \(0.594560\pi\)
\(44\) −0.936719 + 1.94512i −0.141216 + 0.293237i
\(45\) 0 0
\(46\) −1.21558 0.585392i −0.179227 0.0863114i
\(47\) −2.87406 + 3.60396i −0.419225 + 0.525691i −0.945936 0.324353i \(-0.894853\pi\)
0.526711 + 0.850044i \(0.323425\pi\)
\(48\) 0 0
\(49\) −4.78966 + 5.10482i −0.684237 + 0.729260i
\(50\) 2.74555i 0.388280i
\(51\) 0 0
\(52\) 1.25817 2.61263i 0.174477 0.362306i
\(53\) 7.68111 1.75316i 1.05508 0.240816i 0.340411 0.940277i \(-0.389434\pi\)
0.714671 + 0.699461i \(0.246577\pi\)
\(54\) 0 0
\(55\) 1.40647 + 2.92056i 0.189648 + 0.393808i
\(56\) −2.64362 0.106275i −0.353268 0.0142016i
\(57\) 0 0
\(58\) 5.94399 + 7.45353i 0.780484 + 0.978696i
\(59\) 5.96899 2.87452i 0.777097 0.374230i −0.00291427 0.999996i \(-0.500928\pi\)
0.780011 + 0.625766i \(0.215213\pi\)
\(60\) 0 0
\(61\) −1.14351 0.260999i −0.146411 0.0334174i 0.148687 0.988884i \(-0.452495\pi\)
−0.295098 + 0.955467i \(0.595352\pi\)
\(62\) 4.56364 5.72263i 0.579583 0.726774i
\(63\) 0 0
\(64\) −0.623490 0.781831i −0.0779362 0.0977289i
\(65\) −1.88912 3.92281i −0.234317 0.486564i
\(66\) 0 0
\(67\) −1.42683 −0.174315 −0.0871573 0.996195i \(-0.527778\pi\)
−0.0871573 + 0.996195i \(0.527778\pi\)
\(68\) −0.204632 −0.0248153
\(69\) 0 0
\(70\) −2.59960 + 3.00386i −0.310712 + 0.359031i
\(71\) 10.7059 2.44356i 1.27056 0.289998i 0.466489 0.884527i \(-0.345519\pi\)
0.804074 + 0.594530i \(0.202662\pi\)
\(72\) 0 0
\(73\) −5.67419 + 4.52502i −0.664114 + 0.529613i −0.896519 0.443006i \(-0.853912\pi\)
0.232405 + 0.972619i \(0.425341\pi\)
\(74\) −0.331863 + 0.264652i −0.0385783 + 0.0307652i
\(75\) 0 0
\(76\) −5.26220 + 1.20106i −0.603615 + 0.137771i
\(77\) −1.49369 + 5.51320i −0.170222 + 0.628287i
\(78\) 0 0
\(79\) 10.0908 1.13531 0.567654 0.823267i \(-0.307851\pi\)
0.567654 + 0.823267i \(0.307851\pi\)
\(80\) −1.50148 −0.167871
\(81\) 0 0
\(82\) 0.556665 + 1.15593i 0.0614733 + 0.127651i
\(83\) 4.55824 + 5.71585i 0.500332 + 0.627396i 0.966304 0.257403i \(-0.0828668\pi\)
−0.465972 + 0.884799i \(0.654295\pi\)
\(84\) 0 0
\(85\) −0.191568 + 0.240219i −0.0207785 + 0.0260554i
\(86\) −8.67675 1.98041i −0.935638 0.213553i
\(87\) 0 0
\(88\) −1.94512 + 0.936719i −0.207350 + 0.0998546i
\(89\) −4.14732 5.20058i −0.439615 0.551260i 0.511827 0.859089i \(-0.328969\pi\)
−0.951442 + 0.307829i \(0.900398\pi\)
\(90\) 0 0
\(91\) 2.00628 7.40517i 0.210316 0.776273i
\(92\) −0.585392 1.21558i −0.0610314 0.126733i
\(93\) 0 0
\(94\) −4.49406 + 1.02574i −0.463527 + 0.105797i
\(95\) −3.51632 + 7.30170i −0.360766 + 0.749139i
\(96\) 0 0
\(97\) 18.0992i 1.83770i −0.394612 0.918848i \(-0.629121\pi\)
0.394612 0.918848i \(-0.370879\pi\)
\(98\) −6.92751 + 1.00481i −0.699784 + 0.101501i
\(99\) 0 0
\(100\) 1.71182 2.14656i 0.171182 0.214656i
\(101\) −13.8795 6.68400i −1.38106 0.665083i −0.411834 0.911259i \(-0.635112\pi\)
−0.969225 + 0.246176i \(0.920826\pi\)
\(102\) 0 0
\(103\) −0.0524422 + 0.108897i −0.00516729 + 0.0107300i −0.903537 0.428511i \(-0.859038\pi\)
0.898369 + 0.439241i \(0.144753\pi\)
\(104\) 2.61263 1.25817i 0.256189 0.123374i
\(105\) 0 0
\(106\) 7.09842 + 3.41842i 0.689459 + 0.332026i
\(107\) 12.9825 10.3532i 1.25506 1.00088i 0.255645 0.966771i \(-0.417712\pi\)
0.999418 0.0341092i \(-0.0108594\pi\)
\(108\) 0 0
\(109\) −6.79050 + 8.51501i −0.650412 + 0.815590i −0.992262 0.124164i \(-0.960375\pi\)
0.341850 + 0.939754i \(0.388946\pi\)
\(110\) −0.721318 + 3.16030i −0.0687750 + 0.301323i
\(111\) 0 0
\(112\) −2.00060 1.73136i −0.189039 0.163598i
\(113\) 2.73829 2.18372i 0.257597 0.205427i −0.486173 0.873863i \(-0.661607\pi\)
0.743770 + 0.668436i \(0.233036\pi\)
\(114\) 0 0
\(115\) −1.97500 0.450780i −0.184169 0.0420354i
\(116\) 9.53342i 0.885156i
\(117\) 0 0
\(118\) 6.45898 + 1.47422i 0.594597 + 0.135713i
\(119\) −0.532244 + 0.0991748i −0.0487908 + 0.00909134i
\(120\) 0 0
\(121\) −1.41058 6.18015i −0.128234 0.561831i
\(122\) −0.731302 0.917023i −0.0662089 0.0830234i
\(123\) 0 0
\(124\) 7.13600 1.62874i 0.640831 0.146266i
\(125\) −2.58787 11.3382i −0.231467 1.01412i
\(126\) 0 0
\(127\) −0.626861 + 2.74646i −0.0556249 + 0.243709i −0.995095 0.0989216i \(-0.968461\pi\)
0.939470 + 0.342630i \(0.111318\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0.968854 4.24483i 0.0849741 0.372296i
\(131\) 5.11176 2.46170i 0.446617 0.215079i −0.197037 0.980396i \(-0.563132\pi\)
0.643654 + 0.765317i \(0.277418\pi\)
\(132\) 0 0
\(133\) −13.1048 + 5.67426i −1.13633 + 0.492021i
\(134\) −1.11554 0.889612i −0.0963678 0.0768508i
\(135\) 0 0
\(136\) −0.159988 0.127586i −0.0137188 0.0109404i
\(137\) 2.38003 + 4.94219i 0.203340 + 0.422240i 0.977554 0.210684i \(-0.0675690\pi\)
−0.774214 + 0.632924i \(0.781855\pi\)
\(138\) 0 0
\(139\) 7.83497 16.2695i 0.664554 1.37996i −0.247096 0.968991i \(-0.579476\pi\)
0.911650 0.410969i \(-0.134809\pi\)
\(140\) −3.90533 + 0.727692i −0.330060 + 0.0615012i
\(141\) 0 0
\(142\) 9.89378 + 4.76459i 0.830268 + 0.399836i
\(143\) −1.39307 6.10345i −0.116495 0.510397i
\(144\) 0 0
\(145\) 11.1913 + 8.92479i 0.929390 + 0.741164i
\(146\) −7.25756 −0.600640
\(147\) 0 0
\(148\) −0.424469 −0.0348911
\(149\) −4.98163 3.97272i −0.408111 0.325458i 0.397824 0.917462i \(-0.369765\pi\)
−0.805935 + 0.592004i \(0.798337\pi\)
\(150\) 0 0
\(151\) 0.923274 + 4.04513i 0.0751350 + 0.329188i 0.998501 0.0547329i \(-0.0174307\pi\)
−0.923366 + 0.383921i \(0.874574\pi\)
\(152\) −4.86300 2.34190i −0.394441 0.189953i
\(153\) 0 0
\(154\) −4.60524 + 3.37909i −0.371100 + 0.272295i
\(155\) 4.76843 9.90175i 0.383010 0.795328i
\(156\) 0 0
\(157\) −5.75842 11.9575i −0.459572 0.954312i −0.994029 0.109116i \(-0.965198\pi\)
0.534457 0.845196i \(-0.320516\pi\)
\(158\) 7.88933 + 6.29153i 0.627642 + 0.500527i
\(159\) 0 0
\(160\) −1.17391 0.936158i −0.0928054 0.0740098i
\(161\) −2.11173 2.87799i −0.166427 0.226818i
\(162\) 0 0
\(163\) 14.1708 6.82429i 1.10994 0.534519i 0.213170 0.977015i \(-0.431621\pi\)
0.896771 + 0.442496i \(0.145907\pi\)
\(164\) −0.285490 + 1.25081i −0.0222930 + 0.0976721i
\(165\) 0 0
\(166\) 7.31085i 0.567432i
\(167\) −0.487595 + 2.13629i −0.0377312 + 0.165311i −0.990283 0.139064i \(-0.955591\pi\)
0.952552 + 0.304375i \(0.0984477\pi\)
\(168\) 0 0
\(169\) −1.02163 4.47608i −0.0785873 0.344313i
\(170\) −0.299548 + 0.0683698i −0.0229743 + 0.00524372i
\(171\) 0 0
\(172\) −5.54899 6.95821i −0.423106 0.530559i
\(173\) −2.37986 10.4268i −0.180937 0.792738i −0.981185 0.193069i \(-0.938156\pi\)
0.800248 0.599669i \(-0.204701\pi\)
\(174\) 0 0
\(175\) 3.41210 6.41280i 0.257930 0.484762i
\(176\) −2.10479 0.480404i −0.158654 0.0362118i
\(177\) 0 0
\(178\) 6.65179i 0.498573i
\(179\) −6.12193 1.39729i −0.457574 0.104438i −0.0124802 0.999922i \(-0.503973\pi\)
−0.445094 + 0.895484i \(0.646830\pi\)
\(180\) 0 0
\(181\) 8.03542 6.40804i 0.597268 0.476306i −0.277580 0.960703i \(-0.589532\pi\)
0.874848 + 0.484397i \(0.160961\pi\)
\(182\) 6.18562 4.53870i 0.458509 0.336431i
\(183\) 0 0
\(184\) 0.300223 1.31536i 0.0221328 0.0969699i
\(185\) −0.397370 + 0.498286i −0.0292152 + 0.0366347i
\(186\) 0 0
\(187\) −0.345400 + 0.275447i −0.0252582 + 0.0201427i
\(188\) −4.15314 2.00005i −0.302899 0.145868i
\(189\) 0 0
\(190\) −7.30170 + 3.51632i −0.529721 + 0.255100i
\(191\) −7.78261 + 16.1607i −0.563130 + 1.16935i 0.403927 + 0.914791i \(0.367645\pi\)
−0.967057 + 0.254560i \(0.918069\pi\)
\(192\) 0 0
\(193\) −3.69255 1.77824i −0.265796 0.128000i 0.296240 0.955114i \(-0.404267\pi\)
−0.562035 + 0.827113i \(0.689982\pi\)
\(194\) 11.2847 14.1505i 0.810192 1.01595i
\(195\) 0 0
\(196\) −6.04263 3.53364i −0.431617 0.252403i
\(197\) 14.7696i 1.05229i −0.850395 0.526144i \(-0.823637\pi\)
0.850395 0.526144i \(-0.176363\pi\)
\(198\) 0 0
\(199\) 8.20609 17.0401i 0.581714 1.20794i −0.377696 0.925930i \(-0.623284\pi\)
0.959411 0.282013i \(-0.0910021\pi\)
\(200\) 2.67672 0.610943i 0.189272 0.0432002i
\(201\) 0 0
\(202\) −6.68400 13.8795i −0.470285 0.976556i
\(203\) 4.62037 + 24.7963i 0.324286 + 1.74036i
\(204\) 0 0
\(205\) 1.20107 + 1.50610i 0.0838866 + 0.105190i
\(206\) −0.108897 + 0.0524422i −0.00758724 + 0.00365382i
\(207\) 0 0
\(208\) 2.82709 + 0.645265i 0.196024 + 0.0447411i
\(209\) −7.26540 + 9.11053i −0.502558 + 0.630188i
\(210\) 0 0
\(211\) 9.29395 + 11.6542i 0.639822 + 0.802311i 0.990981 0.134005i \(-0.0427838\pi\)
−0.351159 + 0.936316i \(0.614212\pi\)
\(212\) 3.41842 + 7.09842i 0.234778 + 0.487521i
\(213\) 0 0
\(214\) 16.6052 1.13511
\(215\) −13.3630 −0.911350
\(216\) 0 0
\(217\) 17.7712 7.69480i 1.20639 0.522357i
\(218\) −10.6180 + 2.42350i −0.719145 + 0.164140i
\(219\) 0 0
\(220\) −2.53436 + 2.02109i −0.170867 + 0.136262i
\(221\) 0.463932 0.369973i 0.0312074 0.0248871i
\(222\) 0 0
\(223\) 13.7631 3.14133i 0.921644 0.210359i 0.264728 0.964323i \(-0.414718\pi\)
0.656916 + 0.753964i \(0.271861\pi\)
\(224\) −0.484650 2.60098i −0.0323820 0.173786i
\(225\) 0 0
\(226\) 3.50241 0.232977
\(227\) −15.9299 −1.05731 −0.528654 0.848837i \(-0.677303\pi\)
−0.528654 + 0.848837i \(0.677303\pi\)
\(228\) 0 0
\(229\) 7.06838 + 14.6776i 0.467092 + 0.969926i 0.992859 + 0.119297i \(0.0380641\pi\)
−0.525767 + 0.850629i \(0.676222\pi\)
\(230\) −1.26306 1.58382i −0.0832835 0.104434i
\(231\) 0 0
\(232\) −5.94399 + 7.45353i −0.390242 + 0.489348i
\(233\) −7.71873 1.76175i −0.505671 0.115416i −0.0379277 0.999280i \(-0.512076\pi\)
−0.467743 + 0.883864i \(0.654933\pi\)
\(234\) 0 0
\(235\) −6.23586 + 3.00303i −0.406783 + 0.195896i
\(236\) 4.13067 + 5.17970i 0.268884 + 0.337170i
\(237\) 0 0
\(238\) −0.477960 0.254311i −0.0309815 0.0164845i
\(239\) 8.84157 + 18.3597i 0.571914 + 1.18759i 0.963564 + 0.267477i \(0.0861900\pi\)
−0.391650 + 0.920114i \(0.628096\pi\)
\(240\) 0 0
\(241\) −6.16349 + 1.40678i −0.397025 + 0.0906185i −0.416372 0.909194i \(-0.636699\pi\)
0.0193465 + 0.999813i \(0.493841\pi\)
\(242\) 2.75042 5.71131i 0.176804 0.367137i
\(243\) 0 0
\(244\) 1.17292i 0.0750883i
\(245\) −9.80502 + 3.78543i −0.626420 + 0.241842i
\(246\) 0 0
\(247\) 9.75868 12.2370i 0.620930 0.778622i
\(248\) 6.59465 + 3.17582i 0.418761 + 0.201665i
\(249\) 0 0
\(250\) 5.04598 10.4781i 0.319136 0.662693i
\(251\) 0.781617 0.376407i 0.0493352 0.0237586i −0.409053 0.912510i \(-0.634141\pi\)
0.458389 + 0.888752i \(0.348427\pi\)
\(252\) 0 0
\(253\) −2.62433 1.26381i −0.164990 0.0794552i
\(254\) −2.20249 + 1.75643i −0.138196 + 0.110208i
\(255\) 0 0
\(256\) 0.623490 0.781831i 0.0389681 0.0488645i
\(257\) 0.502741 2.20265i 0.0313601 0.137398i −0.956824 0.290667i \(-0.906123\pi\)
0.988185 + 0.153269i \(0.0489801\pi\)
\(258\) 0 0
\(259\) −1.10404 + 0.205719i −0.0686015 + 0.0127827i
\(260\) 3.40409 2.71467i 0.211112 0.168357i
\(261\) 0 0
\(262\) 5.53138 + 1.26250i 0.341730 + 0.0779976i
\(263\) 17.7691i 1.09569i 0.836579 + 0.547846i \(0.184552\pi\)
−0.836579 + 0.547846i \(0.815448\pi\)
\(264\) 0 0
\(265\) 11.5330 + 2.63234i 0.708470 + 0.161704i
\(266\) −13.7836 3.73439i −0.845126 0.228970i
\(267\) 0 0
\(268\) −0.317499 1.39105i −0.0193943 0.0849721i
\(269\) −19.1598 24.0257i −1.16820 1.46487i −0.857591 0.514333i \(-0.828040\pi\)
−0.310605 0.950539i \(-0.600532\pi\)
\(270\) 0 0
\(271\) −2.69899 + 0.616026i −0.163952 + 0.0374209i −0.303709 0.952765i \(-0.598225\pi\)
0.139757 + 0.990186i \(0.455368\pi\)
\(272\) −0.0455349 0.199501i −0.00276096 0.0120965i
\(273\) 0 0
\(274\) −1.22062 + 5.34789i −0.0737404 + 0.323078i
\(275\) 5.92742i 0.357437i
\(276\) 0 0
\(277\) −4.32785 + 18.9615i −0.260035 + 1.13929i 0.661178 + 0.750229i \(0.270057\pi\)
−0.921213 + 0.389059i \(0.872800\pi\)
\(278\) 16.2695 7.83497i 0.975779 0.469910i
\(279\) 0 0
\(280\) −3.50702 1.86600i −0.209584 0.111515i
\(281\) 19.2555 + 15.3557i 1.14869 + 0.916047i 0.997373 0.0724387i \(-0.0230782\pi\)
0.151314 + 0.988486i \(0.451650\pi\)
\(282\) 0 0
\(283\) −25.0714 19.9938i −1.49034 1.18851i −0.933855 0.357652i \(-0.883577\pi\)
−0.556487 0.830856i \(-0.687851\pi\)
\(284\) 4.76459 + 9.89378i 0.282727 + 0.587088i
\(285\) 0 0
\(286\) 2.71629 5.64044i 0.160618 0.333526i
\(287\) −0.136349 + 3.39171i −0.00804841 + 0.200206i
\(288\) 0 0
\(289\) 15.2787 + 7.35786i 0.898750 + 0.432815i
\(290\) 3.18522 + 13.9554i 0.187043 + 0.819487i
\(291\) 0 0
\(292\) −5.67419 4.52502i −0.332057 0.264807i
\(293\) −24.7786 −1.44758 −0.723789 0.690021i \(-0.757601\pi\)
−0.723789 + 0.690021i \(0.757601\pi\)
\(294\) 0 0
\(295\) 9.94744 0.579162
\(296\) −0.331863 0.264652i −0.0192892 0.0153826i
\(297\) 0 0
\(298\) −1.41785 6.21199i −0.0821336 0.359851i
\(299\) 3.52493 + 1.69752i 0.203852 + 0.0981700i
\(300\) 0 0
\(301\) −17.8051 15.4089i −1.02627 0.888153i
\(302\) −1.80025 + 3.73826i −0.103593 + 0.215113i
\(303\) 0 0
\(304\) −2.34190 4.86300i −0.134317 0.278912i
\(305\) −1.37689 1.09804i −0.0788407 0.0628733i
\(306\) 0 0
\(307\) −3.08325 2.45881i −0.175971 0.140332i 0.531544 0.847031i \(-0.321612\pi\)
−0.707514 + 0.706699i \(0.750184\pi\)
\(308\) −5.70735 0.229439i −0.325206 0.0130735i
\(309\) 0 0
\(310\) 9.90175 4.76843i 0.562382 0.270829i
\(311\) −1.45343 + 6.36788i −0.0824163 + 0.361089i −0.999273 0.0381273i \(-0.987861\pi\)
0.916857 + 0.399217i \(0.130718\pi\)
\(312\) 0 0
\(313\) 22.9071i 1.29479i 0.762156 + 0.647393i \(0.224141\pi\)
−0.762156 + 0.647393i \(0.775859\pi\)
\(314\) 2.95326 12.9391i 0.166662 0.730194i
\(315\) 0 0
\(316\) 2.24542 + 9.83784i 0.126315 + 0.553422i
\(317\) 27.7501 6.33378i 1.55860 0.355740i 0.645593 0.763682i \(-0.276610\pi\)
0.913008 + 0.407941i \(0.133753\pi\)
\(318\) 0 0
\(319\) 12.8326 + 16.0915i 0.718487 + 0.900954i
\(320\) −0.334111 1.46384i −0.0186774 0.0818309i
\(321\) 0 0
\(322\) 0.143385 3.56674i 0.00799055 0.198767i
\(323\) −1.07681 0.245776i −0.0599155 0.0136753i
\(324\) 0 0
\(325\) 7.96154i 0.441627i
\(326\) 15.3340 + 3.49989i 0.849274 + 0.193841i
\(327\) 0 0
\(328\) −1.00307 + 0.799925i −0.0553855 + 0.0441685i
\(329\) −11.7716 3.18927i −0.648987 0.175830i
\(330\) 0 0
\(331\) 2.37205 10.3926i 0.130380 0.571230i −0.866963 0.498373i \(-0.833931\pi\)
0.997342 0.0728573i \(-0.0232118\pi\)
\(332\) −4.55824 + 5.71585i −0.250166 + 0.313698i
\(333\) 0 0
\(334\) −1.71317 + 1.36621i −0.0937407 + 0.0747557i
\(335\) −1.93019 0.929532i −0.105458 0.0507858i
\(336\) 0 0
\(337\) −7.10579 + 3.42197i −0.387077 + 0.186406i −0.617293 0.786733i \(-0.711771\pi\)
0.230216 + 0.973139i \(0.426057\pi\)
\(338\) 1.99204 4.13652i 0.108353 0.224997i
\(339\) 0 0
\(340\) −0.276824 0.133311i −0.0150129 0.00722982i
\(341\) 9.85252 12.3547i 0.533544 0.669043i
\(342\) 0 0
\(343\) −17.4294 6.26238i −0.941097 0.338137i
\(344\) 8.89989i 0.479850i
\(345\) 0 0
\(346\) 4.64038 9.63585i 0.249468 0.518027i
\(347\) 24.5003 5.59204i 1.31525 0.300196i 0.493349 0.869832i \(-0.335773\pi\)
0.821898 + 0.569635i \(0.192916\pi\)
\(348\) 0 0
\(349\) 11.6767 + 24.2469i 0.625038 + 1.29791i 0.937503 + 0.347976i \(0.113131\pi\)
−0.312465 + 0.949929i \(0.601155\pi\)
\(350\) 6.66600 2.88632i 0.356313 0.154280i
\(351\) 0 0
\(352\) −1.34606 1.68791i −0.0717454 0.0899658i
\(353\) 1.47598 0.710796i 0.0785586 0.0378318i −0.394192 0.919028i \(-0.628975\pi\)
0.472751 + 0.881196i \(0.343261\pi\)
\(354\) 0 0
\(355\) 16.0748 + 3.66896i 0.853161 + 0.194728i
\(356\) 4.14732 5.20058i 0.219808 0.275630i
\(357\) 0 0
\(358\) −3.91512 4.90941i −0.206921 0.259470i
\(359\) −4.20157 8.72464i −0.221750 0.460469i 0.760180 0.649713i \(-0.225111\pi\)
−0.981930 + 0.189243i \(0.939396\pi\)
\(360\) 0 0
\(361\) −10.1333 −0.533329
\(362\) 10.2777 0.540184
\(363\) 0 0
\(364\) 7.66595 + 0.308176i 0.401805 + 0.0161528i
\(365\) −10.6239 + 2.42483i −0.556079 + 0.126922i
\(366\) 0 0
\(367\) −28.1872 + 22.4785i −1.47136 + 1.17337i −0.524634 + 0.851328i \(0.675798\pi\)
−0.946725 + 0.322042i \(0.895631\pi\)
\(368\) 1.05484 0.841207i 0.0549874 0.0438510i
\(369\) 0 0
\(370\) −0.621353 + 0.141820i −0.0323026 + 0.00737286i
\(371\) 12.3315 + 16.8061i 0.640219 + 0.872531i
\(372\) 0 0
\(373\) −25.8009 −1.33592 −0.667959 0.744198i \(-0.732832\pi\)
−0.667959 + 0.744198i \(0.732832\pi\)
\(374\) −0.441783 −0.0228441
\(375\) 0 0
\(376\) −2.00005 4.15314i −0.103145 0.214182i
\(377\) −17.2364 21.6137i −0.887718 1.11316i
\(378\) 0 0
\(379\) −15.2588 + 19.1340i −0.783794 + 0.982846i 0.216185 + 0.976352i \(0.430639\pi\)
−0.999979 + 0.00649407i \(0.997933\pi\)
\(380\) −7.90109 1.80337i −0.405317 0.0925110i
\(381\) 0 0
\(382\) −16.1607 + 7.78261i −0.826856 + 0.398193i
\(383\) −9.10693 11.4197i −0.465342 0.583521i 0.492682 0.870210i \(-0.336017\pi\)
−0.958024 + 0.286689i \(0.907445\pi\)
\(384\) 0 0
\(385\) −5.61232 + 6.48509i −0.286030 + 0.330511i
\(386\) −1.77824 3.69255i −0.0905100 0.187946i
\(387\) 0 0
\(388\) 17.6454 4.02745i 0.895810 0.204463i
\(389\) −8.15516 + 16.9344i −0.413483 + 0.858606i 0.585372 + 0.810765i \(0.300949\pi\)
−0.998855 + 0.0478415i \(0.984766\pi\)
\(390\) 0 0
\(391\) 0.276088i 0.0139624i
\(392\) −2.52113 6.53023i −0.127336 0.329826i
\(393\) 0 0
\(394\) 9.20868 11.5473i 0.463926 0.581745i
\(395\) 13.6508 + 6.57386i 0.686844 + 0.330767i
\(396\) 0 0
\(397\) 3.03244 6.29693i 0.152194 0.316034i −0.810907 0.585175i \(-0.801026\pi\)
0.963101 + 0.269142i \(0.0867400\pi\)
\(398\) 17.0401 8.20609i 0.854144 0.411334i
\(399\) 0 0
\(400\) 2.47366 + 1.19125i 0.123683 + 0.0595626i
\(401\) 1.40707 1.12210i 0.0702658 0.0560351i −0.587727 0.809059i \(-0.699977\pi\)
0.657993 + 0.753024i \(0.271406\pi\)
\(402\) 0 0
\(403\) −13.2336 + 16.5944i −0.659214 + 0.826628i
\(404\) 3.42795 15.0188i 0.170547 0.747214i
\(405\) 0 0
\(406\) −11.8479 + 22.2673i −0.588000 + 1.10511i
\(407\) −0.716465 + 0.571362i −0.0355138 + 0.0283213i
\(408\) 0 0
\(409\) −1.27232 0.290399i −0.0629121 0.0143593i 0.190949 0.981600i \(-0.438843\pi\)
−0.253861 + 0.967241i \(0.581701\pi\)
\(410\) 1.92637i 0.0951367i
\(411\) 0 0
\(412\) −0.117837 0.0268954i −0.00580539 0.00132504i
\(413\) 13.2541 + 11.4704i 0.652194 + 0.564421i
\(414\) 0 0
\(415\) 2.44264 + 10.7019i 0.119904 + 0.525335i
\(416\) 1.80799 + 2.26715i 0.0886441 + 0.111156i
\(417\) 0 0
\(418\) −11.3606 + 2.59299i −0.555667 + 0.126827i
\(419\) 5.85902 + 25.6701i 0.286232 + 1.25406i 0.889651 + 0.456640i \(0.150947\pi\)
−0.603419 + 0.797424i \(0.706195\pi\)
\(420\) 0 0
\(421\) −1.79434 + 7.86150i −0.0874506 + 0.383146i −0.999646 0.0266096i \(-0.991529\pi\)
0.912195 + 0.409756i \(0.134386\pi\)
\(422\) 14.9063i 0.725629i
\(423\) 0 0
\(424\) −1.75316 + 7.68111i −0.0851412 + 0.373028i
\(425\) 0.506190 0.243768i 0.0245538 0.0118245i
\(426\) 0 0
\(427\) −0.568454 3.05074i −0.0275094 0.147636i
\(428\) 12.9825 + 10.3532i 0.627532 + 0.500440i
\(429\) 0 0
\(430\) −10.4476 8.33170i −0.503829 0.401790i
\(431\) −9.00171 18.6923i −0.433597 0.900374i −0.997232 0.0743500i \(-0.976312\pi\)
0.563635 0.826024i \(-0.309402\pi\)
\(432\) 0 0
\(433\) −3.33827 + 6.93198i −0.160427 + 0.333130i −0.965652 0.259840i \(-0.916330\pi\)
0.805225 + 0.592970i \(0.202045\pi\)
\(434\) 18.6917 + 5.06415i 0.897232 + 0.243087i
\(435\) 0 0
\(436\) −9.81255 4.72548i −0.469936 0.226309i
\(437\) −1.62046 7.09971i −0.0775172 0.339625i
\(438\) 0 0
\(439\) 29.7877 + 23.7549i 1.42169 + 1.13376i 0.970435 + 0.241363i \(0.0775946\pi\)
0.451254 + 0.892396i \(0.350977\pi\)
\(440\) −3.24157 −0.154536
\(441\) 0 0
\(442\) 0.593391 0.0282247
\(443\) −12.9541 10.3305i −0.615466 0.490818i 0.265428 0.964131i \(-0.414487\pi\)
−0.880895 + 0.473313i \(0.843058\pi\)
\(444\) 0 0
\(445\) −2.22244 9.73713i −0.105354 0.461584i
\(446\) 12.7190 + 6.12515i 0.602262 + 0.290034i
\(447\) 0 0
\(448\) 1.24277 2.33570i 0.0587155 0.110352i
\(449\) 7.88953 16.3828i 0.372330 0.773151i −0.627656 0.778491i \(-0.715986\pi\)
0.999986 + 0.00534002i \(0.00169979\pi\)
\(450\) 0 0
\(451\) 1.20179 + 2.49555i 0.0565902 + 0.117511i
\(452\) 2.73829 + 2.18372i 0.128798 + 0.102713i
\(453\) 0 0
\(454\) −12.4545 9.93216i −0.584520 0.466139i
\(455\) 7.53831 8.71059i 0.353401 0.408359i
\(456\) 0 0
\(457\) −26.4700 + 12.7473i −1.23821 + 0.596292i −0.934327 0.356416i \(-0.883999\pi\)
−0.303887 + 0.952708i \(0.598284\pi\)
\(458\) −3.62508 + 15.8825i −0.169389 + 0.742141i
\(459\) 0 0
\(460\) 2.02579i 0.0944527i
\(461\) 0.752767 3.29809i 0.0350599 0.153607i −0.954368 0.298633i \(-0.903469\pi\)
0.989428 + 0.145026i \(0.0463265\pi\)
\(462\) 0 0
\(463\) −3.00074 13.1471i −0.139456 0.610998i −0.995555 0.0941849i \(-0.969976\pi\)
0.856099 0.516813i \(-0.172882\pi\)
\(464\) −9.29440 + 2.12139i −0.431482 + 0.0984829i
\(465\) 0 0
\(466\) −4.93631 6.18994i −0.228670 0.286744i
\(467\) −0.900613 3.94584i −0.0416754 0.182592i 0.949806 0.312839i \(-0.101280\pi\)
−0.991482 + 0.130247i \(0.958423\pi\)
\(468\) 0 0
\(469\) −1.49998 3.46423i −0.0692628 0.159963i
\(470\) −6.74775 1.54013i −0.311251 0.0710409i
\(471\) 0 0
\(472\) 6.62508i 0.304944i
\(473\) −18.7324 4.27554i −0.861315 0.196590i
\(474\) 0 0
\(475\) 11.5861 9.23961i 0.531607 0.423943i
\(476\) −0.215124 0.496831i −0.00986018 0.0227722i
\(477\) 0 0
\(478\) −4.53448 + 19.8668i −0.207402 + 0.908688i
\(479\) −23.4220 + 29.3703i −1.07018 + 1.34196i −0.133784 + 0.991010i \(0.542713\pi\)
−0.936394 + 0.350951i \(0.885858\pi\)
\(480\) 0 0
\(481\) 0.962335 0.767437i 0.0438787 0.0349921i
\(482\) −5.69592 2.74301i −0.259442 0.124941i
\(483\) 0 0
\(484\) 5.71131 2.75042i 0.259605 0.125019i
\(485\) 11.7911 24.4844i 0.535404 1.11178i
\(486\) 0 0
\(487\) −24.7132 11.9012i −1.11986 0.539296i −0.220011 0.975497i \(-0.570609\pi\)
−0.899849 + 0.436201i \(0.856324\pi\)
\(488\) 0.731302 0.917023i 0.0331045 0.0415117i
\(489\) 0 0
\(490\) −10.0260 3.15376i −0.452931 0.142472i
\(491\) 8.06621i 0.364023i 0.983296 + 0.182011i \(0.0582608\pi\)
−0.983296 + 0.182011i \(0.941739\pi\)
\(492\) 0 0
\(493\) −0.846439 + 1.75765i −0.0381217 + 0.0791605i
\(494\) 15.2593 3.48283i 0.686548 0.156700i
\(495\) 0 0
\(496\) 3.17582 + 6.59465i 0.142598 + 0.296109i
\(497\) 17.1876 + 23.4244i 0.770971 + 1.05073i
\(498\) 0 0
\(499\) 2.05876 + 2.58161i 0.0921629 + 0.115569i 0.825775 0.564000i \(-0.190738\pi\)
−0.733612 + 0.679569i \(0.762167\pi\)
\(500\) 10.4781 5.04598i 0.468595 0.225663i
\(501\) 0 0
\(502\) 0.845778 + 0.193043i 0.0377489 + 0.00861595i
\(503\) −19.4857 + 24.4343i −0.868825 + 1.08947i 0.126411 + 0.991978i \(0.459654\pi\)
−0.995236 + 0.0974941i \(0.968917\pi\)
\(504\) 0 0
\(505\) −14.4216 18.0841i −0.641751 0.804731i
\(506\) −1.26381 2.62433i −0.0561833 0.116666i
\(507\) 0 0
\(508\) −2.81709 −0.124988
\(509\) −1.19757 −0.0530814 −0.0265407 0.999648i \(-0.508449\pi\)
−0.0265407 + 0.999648i \(0.508449\pi\)
\(510\) 0 0
\(511\) −16.9515 9.01950i −0.749891 0.398999i
\(512\) 0.974928 0.222521i 0.0430861 0.00983413i
\(513\) 0 0
\(514\) 1.76639 1.40865i 0.0779121 0.0621328i
\(515\) −0.141886 + 0.113151i −0.00625226 + 0.00498601i
\(516\) 0 0
\(517\) −9.70231 + 2.21449i −0.426707 + 0.0973931i
\(518\) −0.991434 0.527518i −0.0435611 0.0231778i
\(519\) 0 0
\(520\) 4.35399 0.190935
\(521\) 12.2679 0.537468 0.268734 0.963214i \(-0.413395\pi\)
0.268734 + 0.963214i \(0.413395\pi\)
\(522\) 0 0
\(523\) −3.66609 7.61271i −0.160307 0.332881i 0.805308 0.592856i \(-0.202000\pi\)
−0.965615 + 0.259976i \(0.916285\pi\)
\(524\) 3.53745 + 4.43582i 0.154534 + 0.193780i
\(525\) 0 0
\(526\) −11.0789 + 13.8925i −0.483062 + 0.605741i
\(527\) 1.46025 + 0.333293i 0.0636096 + 0.0145185i
\(528\) 0 0
\(529\) −19.0822 + 9.18952i −0.829662 + 0.399544i
\(530\) 7.37566 + 9.24879i 0.320378 + 0.401742i
\(531\) 0 0
\(532\) −8.44809 11.5136i −0.366271 0.499177i
\(533\) −1.61421 3.35195i −0.0699193 0.145189i
\(534\) 0 0
\(535\) 24.3073 5.54798i 1.05090 0.239860i
\(536\) 0.619077 1.28553i 0.0267401 0.0555263i
\(537\) 0 0
\(538\) 30.7300i 1.32486i
\(539\) −14.9559 + 2.16930i −0.644197 + 0.0934382i
\(540\) 0 0
\(541\) 9.44157 11.8394i 0.405925 0.509014i −0.536285 0.844037i \(-0.680173\pi\)
0.942210 + 0.335023i \(0.108744\pi\)
\(542\) −2.49424 1.20116i −0.107137 0.0515944i
\(543\) 0 0
\(544\) 0.0887865 0.184367i 0.00380669 0.00790467i
\(545\) −14.7334 + 7.09521i −0.631108 + 0.303926i
\(546\) 0 0
\(547\) 17.5398 + 8.44673i 0.749948 + 0.361156i 0.769495 0.638653i \(-0.220508\pi\)
−0.0195469 + 0.999809i \(0.506222\pi\)
\(548\) −4.28867 + 3.42010i −0.183203 + 0.146100i
\(549\) 0 0
\(550\) 3.69569 4.63424i 0.157585 0.197605i
\(551\) −11.4502 + 50.1667i −0.487796 + 2.13717i
\(552\) 0 0
\(553\) 10.6082 + 24.4998i 0.451107 + 1.04184i
\(554\) −15.2060 + 12.1264i −0.646040 + 0.515199i
\(555\) 0 0
\(556\) 17.6050 + 4.01823i 0.746619 + 0.170411i
\(557\) 24.1887i 1.02491i 0.858715 + 0.512454i \(0.171264\pi\)
−0.858715 + 0.512454i \(0.828736\pi\)
\(558\) 0 0
\(559\) 25.1608 + 5.74279i 1.06419 + 0.242894i
\(560\) −1.57846 3.64549i −0.0667023 0.154050i
\(561\) 0 0
\(562\) 5.48040 + 24.0112i 0.231177 + 1.01285i
\(563\) 16.6035 + 20.8202i 0.699756 + 0.877466i 0.997005 0.0773339i \(-0.0246407\pi\)
−0.297249 + 0.954800i \(0.596069\pi\)
\(564\) 0 0
\(565\) 5.12695 1.17019i 0.215692 0.0492304i
\(566\) −7.13571 31.2636i −0.299936 1.31411i
\(567\) 0 0
\(568\) −2.44356 + 10.7059i −0.102530 + 0.449212i
\(569\) 44.6824i 1.87318i −0.350424 0.936591i \(-0.613963\pi\)
0.350424 0.936591i \(-0.386037\pi\)
\(570\) 0 0
\(571\) −6.67647 + 29.2515i −0.279402 + 1.22414i 0.619151 + 0.785272i \(0.287477\pi\)
−0.898552 + 0.438866i \(0.855380\pi\)
\(572\) 5.64044 2.71629i 0.235839 0.113574i
\(573\) 0 0
\(574\) −2.22130 + 2.56673i −0.0927152 + 0.107133i
\(575\) 2.89612 + 2.30958i 0.120777 + 0.0963161i
\(576\) 0 0
\(577\) −0.188795 0.150559i −0.00785966 0.00626787i 0.619552 0.784956i \(-0.287314\pi\)
−0.627412 + 0.778688i \(0.715886\pi\)
\(578\) 7.35786 + 15.2787i 0.306046 + 0.635512i
\(579\) 0 0
\(580\) −6.21072 + 12.8967i −0.257886 + 0.535506i
\(581\) −9.08572 + 17.0760i −0.376939 + 0.708431i
\(582\) 0 0
\(583\) 15.3249 + 7.38008i 0.634692 + 0.305652i
\(584\) −1.61496 7.07560i −0.0668275 0.292790i
\(585\) 0 0
\(586\) −19.3727 15.4492i −0.800277 0.638200i
\(587\) 31.6533 1.30647 0.653235 0.757155i \(-0.273411\pi\)
0.653235 + 0.757155i \(0.273411\pi\)
\(588\) 0 0
\(589\) 39.5072 1.62787
\(590\) 7.77722 + 6.20213i 0.320183 + 0.255338i
\(591\) 0 0
\(592\) −0.0944532 0.413827i −0.00388200 0.0170082i
\(593\) 26.5558 + 12.7886i 1.09052 + 0.525165i 0.890664 0.454661i \(-0.150240\pi\)
0.199851 + 0.979826i \(0.435954\pi\)
\(594\) 0 0
\(595\) −0.784623 0.212578i −0.0321664 0.00871484i
\(596\) 2.76459 5.74074i 0.113242 0.235150i
\(597\) 0 0
\(598\) 1.69752 + 3.52493i 0.0694167 + 0.144145i
\(599\) −28.6362 22.8366i −1.17004 0.933079i −0.171404 0.985201i \(-0.554830\pi\)
−0.998641 + 0.0521217i \(0.983402\pi\)
\(600\) 0 0
\(601\) −29.5747 23.5851i −1.20638 0.962054i −0.206512 0.978444i \(-0.566211\pi\)
−0.999866 + 0.0163895i \(0.994783\pi\)
\(602\) −4.31333 23.1485i −0.175798 0.943461i
\(603\) 0 0
\(604\) −3.73826 + 1.80025i −0.152108 + 0.0732512i
\(605\) 2.11796 9.27937i 0.0861072 0.377260i
\(606\) 0 0
\(607\) 22.4274i 0.910300i 0.890415 + 0.455150i \(0.150414\pi\)
−0.890415 + 0.455150i \(0.849586\pi\)
\(608\) 1.20106 5.26220i 0.0487095 0.213410i
\(609\) 0 0
\(610\) −0.391884 1.71696i −0.0158669 0.0695176i
\(611\) 13.0319 2.97444i 0.527213 0.120333i
\(612\) 0 0
\(613\) 1.63843 + 2.05453i 0.0661757 + 0.0829817i 0.813818 0.581120i \(-0.197385\pi\)
−0.747642 + 0.664102i \(0.768814\pi\)
\(614\) −0.877540 3.84476i −0.0354146 0.155162i
\(615\) 0 0
\(616\) −4.31913 3.73785i −0.174023 0.150602i
\(617\) 42.2730 + 9.64854i 1.70185 + 0.388436i 0.959529 0.281610i \(-0.0908686\pi\)
0.742319 + 0.670046i \(0.233726\pi\)
\(618\) 0 0
\(619\) 3.81960i 0.153523i −0.997049 0.0767613i \(-0.975542\pi\)
0.997049 0.0767613i \(-0.0244580\pi\)
\(620\) 10.7146 + 2.44553i 0.430307 + 0.0982148i
\(621\) 0 0
\(622\) −5.10664 + 4.07241i −0.204758 + 0.163289i
\(623\) 8.26666 15.5366i 0.331197 0.622461i
\(624\) 0 0
\(625\) 0.830930 3.64054i 0.0332372 0.145622i
\(626\) −14.2824 + 17.9095i −0.570838 + 0.715808i
\(627\) 0 0
\(628\) 10.3763 8.27484i 0.414060 0.330202i
\(629\) −0.0782581 0.0376871i −0.00312035 0.00150268i
\(630\) 0 0
\(631\) −1.92471 + 0.926893i −0.0766216 + 0.0368990i −0.471802 0.881704i \(-0.656396\pi\)
0.395180 + 0.918603i \(0.370682\pi\)
\(632\) −4.37825 + 9.09153i −0.174157 + 0.361642i
\(633\) 0 0
\(634\) 25.6449 + 12.3500i 1.01849 + 0.490479i
\(635\) −2.63724 + 3.30699i −0.104656 + 0.131234i
\(636\) 0 0
\(637\) 20.0884 2.91374i 0.795930 0.115446i
\(638\) 20.5819i 0.814844i
\(639\) 0 0
\(640\) 0.651468 1.35279i 0.0257515 0.0534736i
\(641\) −38.5724 + 8.80389i −1.52352 + 0.347733i −0.900632 0.434582i \(-0.856896\pi\)
−0.622884 + 0.782314i \(0.714039\pi\)
\(642\) 0 0
\(643\) 3.88449 + 8.06622i 0.153189 + 0.318101i 0.963414 0.268019i \(-0.0863691\pi\)
−0.810224 + 0.586120i \(0.800655\pi\)
\(644\) 2.33593 2.69919i 0.0920486 0.106363i
\(645\) 0 0
\(646\) −0.688648 0.863537i −0.0270945 0.0339754i
\(647\) 21.3106 10.2626i 0.837805 0.403466i 0.0347683 0.999395i \(-0.488931\pi\)
0.803036 + 0.595930i \(0.203216\pi\)
\(648\) 0 0
\(649\) 13.9444 + 3.18272i 0.547365 + 0.124933i
\(650\) −4.96394 + 6.22459i −0.194702 + 0.244148i
\(651\) 0 0
\(652\) 9.80648 + 12.2969i 0.384051 + 0.481585i
\(653\) 3.61275 + 7.50196i 0.141378 + 0.293574i 0.959620 0.281299i \(-0.0907654\pi\)
−0.818242 + 0.574874i \(0.805051\pi\)
\(654\) 0 0
\(655\) 8.51885 0.332859
\(656\) −1.28298 −0.0500920
\(657\) 0 0
\(658\) −7.21490 9.83292i −0.281266 0.383327i
\(659\) 3.71159 0.847146i 0.144583 0.0330001i −0.149617 0.988744i \(-0.547804\pi\)
0.294200 + 0.955744i \(0.404947\pi\)
\(660\) 0 0
\(661\) −17.1526 + 13.6787i −0.667159 + 0.532041i −0.897470 0.441076i \(-0.854597\pi\)
0.230311 + 0.973117i \(0.426026\pi\)
\(662\) 8.33424 6.64633i 0.323919 0.258317i
\(663\) 0 0
\(664\) −7.12755 + 1.62682i −0.276603 + 0.0631328i
\(665\) −21.4246 0.861282i −0.830810 0.0333991i
\(666\) 0 0
\(667\) −12.8624 −0.498035
\(668\) −2.19123 −0.0847813
\(669\) 0 0
\(670\) −0.929532 1.93019i −0.0359110 0.0745699i
\(671\) −1.57882 1.97978i −0.0609496 0.0764284i
\(672\) 0 0
\(673\) −7.63064 + 9.56852i −0.294139 + 0.368839i −0.906839 0.421476i \(-0.861512\pi\)
0.612700 + 0.790316i \(0.290083\pi\)
\(674\) −7.68909 1.75498i −0.296173 0.0675995i
\(675\) 0 0
\(676\) 4.13652 1.99204i 0.159097 0.0766170i
\(677\) 14.0442 + 17.6109i 0.539764 + 0.676843i 0.974674 0.223631i \(-0.0717911\pi\)
−0.434910 + 0.900474i \(0.643220\pi\)
\(678\) 0 0
\(679\) 43.9435 19.0272i 1.68640 0.730196i
\(680\) −0.133311 0.276824i −0.00511225 0.0106157i
\(681\) 0 0
\(682\) 15.4060 3.51632i 0.589927 0.134647i
\(683\) 20.5392 42.6501i 0.785910 1.63196i 0.0109579 0.999940i \(-0.496512\pi\)
0.774952 0.632020i \(-0.217774\pi\)
\(684\) 0 0
\(685\) 8.23625i 0.314691i
\(686\) −9.72229 15.7632i −0.371199 0.601840i
\(687\) 0 0
\(688\) 5.54899 6.95821i 0.211553 0.265279i
\(689\) −20.5840 9.91271i −0.784186 0.377644i
\(690\) 0 0
\(691\) 8.05414 16.7246i 0.306394 0.636233i −0.689742 0.724055i \(-0.742276\pi\)
0.996136 + 0.0878215i \(0.0279905\pi\)
\(692\) 9.63585 4.64038i 0.366300 0.176401i
\(693\) 0 0
\(694\) 22.6417 + 10.9037i 0.859467 + 0.413898i
\(695\) 21.1981 16.9049i 0.804090 0.641240i
\(696\) 0 0
\(697\) −0.163690 + 0.205261i −0.00620021 + 0.00777482i
\(698\) −5.98848 + 26.2373i −0.226667 + 0.993095i
\(699\) 0 0
\(700\) 7.01128 + 1.89957i 0.265002 + 0.0717969i
\(701\) −22.2361 + 17.7327i −0.839847 + 0.669756i −0.945848 0.324610i \(-0.894767\pi\)
0.106000 + 0.994366i \(0.466195\pi\)
\(702\) 0 0
\(703\) −2.23364 0.509813i −0.0842433 0.0192280i
\(704\) 2.15892i 0.0813672i
\(705\) 0 0
\(706\) 1.59714 + 0.364538i 0.0601093 + 0.0137196i
\(707\) 1.63717 40.7250i 0.0615721 1.53162i
\(708\) 0 0
\(709\) −8.81551 38.6233i −0.331073 1.45053i −0.817056 0.576558i \(-0.804395\pi\)
0.485983 0.873968i \(-0.338462\pi\)
\(710\) 10.2802 + 12.8910i 0.385809 + 0.483790i
\(711\) 0 0
\(712\) 6.48501 1.48016i 0.243036 0.0554714i
\(713\) 2.19749 + 9.62783i 0.0822966 + 0.360565i
\(714\) 0 0
\(715\) 2.09167 9.16422i 0.0782242 0.342723i
\(716\) 6.27937i 0.234671i
\(717\) 0 0
\(718\) 2.15481 9.44084i 0.0804168 0.352329i
\(719\) −23.6541 + 11.3912i −0.882148 + 0.424820i −0.819409 0.573210i \(-0.805698\pi\)
−0.0627396 + 0.998030i \(0.519984\pi\)
\(720\) 0 0
\(721\) −0.319526 0.0128451i −0.0118998 0.000478378i
\(722\) −7.92250 6.31798i −0.294845 0.235131i
\(723\) 0 0
\(724\) 8.03542 + 6.40804i 0.298634 + 0.238153i
\(725\) −11.3567 23.5824i −0.421777 0.875830i
\(726\) 0 0
\(727\) −17.3659 + 36.0607i −0.644066 + 1.33742i 0.281766 + 0.959483i \(0.409080\pi\)
−0.925832 + 0.377934i \(0.876635\pi\)
\(728\) 5.80133 + 5.02058i 0.215012 + 0.186075i
\(729\) 0 0
\(730\) −9.81794 4.72807i −0.363378 0.174994i
\(731\) −0.405255 1.77554i −0.0149889 0.0656707i
\(732\) 0 0
\(733\) −19.7378 15.7404i −0.729032 0.581384i 0.187061 0.982348i \(-0.440104\pi\)
−0.916094 + 0.400964i \(0.868675\pi\)
\(734\) −36.0528 −1.33073
\(735\) 0 0
\(736\) 1.34919 0.0497319
\(737\) −2.40835 1.92060i −0.0887128 0.0707461i
\(738\) 0 0
\(739\) −9.00127 39.4372i −0.331117 1.45072i −0.816971 0.576679i \(-0.804348\pi\)
0.485854 0.874040i \(-0.338509\pi\)
\(740\) −0.574216 0.276528i −0.0211086 0.0101654i
\(741\) 0 0
\(742\) −0.837303 + 20.8281i −0.0307383 + 0.764624i
\(743\) −1.11411 + 2.31348i −0.0408729 + 0.0848734i −0.920405 0.390965i \(-0.872141\pi\)
0.879532 + 0.475839i \(0.157855\pi\)
\(744\) 0 0
\(745\) −4.15099 8.61961i −0.152080 0.315798i
\(746\) −20.1719 16.0866i −0.738547 0.588972i
\(747\) 0 0
\(748\) −0.345400 0.275447i −0.0126291 0.0100714i
\(749\) 38.7849 + 20.6365i 1.41717 + 0.754041i
\(750\) 0 0
\(751\) −7.83219 + 3.77178i −0.285801 + 0.137634i −0.571292 0.820747i \(-0.693558\pi\)
0.285491 + 0.958381i \(0.407843\pi\)
\(752\) 1.02574 4.49406i 0.0374049 0.163882i
\(753\) 0 0
\(754\) 27.6450i 1.00677i
\(755\) −1.38628 + 6.07368i −0.0504518 + 0.221044i
\(756\) 0 0
\(757\) −9.55538 41.8649i −0.347296 1.52160i −0.783291 0.621655i \(-0.786460\pi\)
0.435995 0.899949i \(-0.356397\pi\)
\(758\) −23.8597 + 5.44582i −0.866623 + 0.197801i
\(759\) 0 0
\(760\) −5.05294 6.33618i −0.183289 0.229837i
\(761\) −7.85501 34.4150i −0.284744 1.24754i −0.891633 0.452758i \(-0.850440\pi\)
0.606890 0.794786i \(-0.292417\pi\)
\(762\) 0 0
\(763\) −27.8125 7.53524i −1.00688 0.272794i
\(764\) −17.4874 3.99138i −0.632670 0.144403i
\(765\) 0 0
\(766\) 14.6064i 0.527750i
\(767\) −18.7297 4.27494i −0.676291 0.154359i
\(768\) 0 0
\(769\) 15.1641 12.0929i 0.546831 0.436083i −0.310706 0.950506i \(-0.600565\pi\)
0.857536 + 0.514423i \(0.171994\pi\)
\(770\) −8.43128 + 1.57103i −0.303842 + 0.0566159i
\(771\) 0 0
\(772\) 0.911985 3.99567i 0.0328231 0.143807i
\(773\) −33.2681 + 41.7169i −1.19657 + 1.50045i −0.378236 + 0.925709i \(0.623469\pi\)
−0.818335 + 0.574742i \(0.805102\pi\)
\(774\) 0 0
\(775\) −15.7118 + 12.5297i −0.564384 + 0.450081i
\(776\) 16.3068 + 7.85295i 0.585381 + 0.281904i
\(777\) 0 0
\(778\) −16.9344 + 8.15516i −0.607126 + 0.292377i
\(779\) −3.00461 + 6.23914i −0.107651 + 0.223540i
\(780\) 0 0
\(781\) 21.3598 + 10.2864i 0.764316 + 0.368075i
\(782\) 0.172138 0.215854i 0.00615564 0.00771892i
\(783\) 0 0
\(784\) 2.10043 6.67744i 0.0750154 0.238480i
\(785\) 19.9274i 0.711239i
\(786\) 0 0
\(787\) 22.0866 45.8633i 0.787303 1.63485i 0.0147578 0.999891i \(-0.495302\pi\)
0.772545 0.634960i \(-0.218983\pi\)
\(788\) 14.3993 3.28654i 0.512953 0.117078i
\(789\) 0 0
\(790\) 6.57386 + 13.6508i 0.233887 + 0.485672i
\(791\) 8.18059 + 4.35270i 0.290868 + 0.154764i
\(792\) 0 0
\(793\) 2.12063 + 2.65918i 0.0753056 + 0.0944303i
\(794\) 6.29693 3.03244i 0.223470 0.107617i
\(795\) 0 0
\(796\) 18.4389 + 4.20856i 0.653550 + 0.149169i
\(797\) −7.93893 + 9.95510i −0.281211 + 0.352628i −0.902297 0.431115i \(-0.858120\pi\)
0.621086 + 0.783743i \(0.286692\pi\)
\(798\) 0 0
\(799\) −0.588125 0.737485i −0.0208064 0.0260903i
\(800\) 1.19125 + 2.47366i 0.0421171 + 0.0874570i
\(801\) 0 0
\(802\) 1.79971 0.0635500
\(803\) −15.6685 −0.552928
\(804\) 0 0
\(805\) −0.981796 5.26904i −0.0346038 0.185709i
\(806\) −20.6929 + 4.72303i −0.728878 + 0.166362i
\(807\) 0 0
\(808\) 12.0442 9.60489i 0.423712 0.337899i
\(809\) 33.1701 26.4523i 1.16620 0.930013i 0.167758 0.985828i \(-0.446347\pi\)
0.998441 + 0.0558151i \(0.0177757\pi\)
\(810\) 0 0
\(811\) 34.7241 7.92555i 1.21933 0.278304i 0.436020 0.899937i \(-0.356388\pi\)
0.783308 + 0.621633i \(0.213531\pi\)
\(812\) −23.1465 + 10.0222i −0.812281 + 0.351711i
\(813\) 0 0
\(814\) −0.916393 −0.0321196
\(815\) 23.6159 0.827228
\(816\) 0 0
\(817\) −20.8426 43.2801i −0.729191 1.51418i
\(818\) −0.813679 1.02032i −0.0284496 0.0356747i
\(819\) 0 0
\(820\) −1.20107 + 1.50610i −0.0419433 + 0.0525952i
\(821\) −14.5214 3.31441i −0.506800 0.115674i −0.0385270 0.999258i \(-0.512267\pi\)
−0.468273 + 0.883584i \(0.655124\pi\)
\(822\) 0 0
\(823\) 12.7383 6.13444i 0.444029 0.213833i −0.198490 0.980103i \(-0.563604\pi\)
0.642519 + 0.766270i \(0.277889\pi\)
\(824\) −0.0753593 0.0944976i −0.00262527 0.00329198i
\(825\) 0 0
\(826\) 3.21084 + 17.2317i 0.111720 + 0.599569i
\(827\) 6.99442 + 14.5241i 0.243220 + 0.505051i 0.986466 0.163967i \(-0.0524291\pi\)
−0.743246 + 0.669018i \(0.766715\pi\)
\(828\) 0 0
\(829\) 31.8673 7.27351i 1.10680 0.252619i 0.370201 0.928952i \(-0.379289\pi\)
0.736597 + 0.676332i \(0.236432\pi\)
\(830\) −4.76279 + 9.89003i −0.165319 + 0.343288i
\(831\) 0 0
\(832\) 2.89980i 0.100532i
\(833\) −0.800322 1.18799i −0.0277295 0.0411614i
\(834\) 0 0
\(835\) −2.05134 + 2.57230i −0.0709895 + 0.0890181i
\(836\) −10.4988 5.05596i −0.363109 0.174864i
\(837\) 0 0
\(838\) −11.4243 + 23.7227i −0.394644 + 0.819487i
\(839\) 11.4472 5.51269i 0.395202 0.190319i −0.225719 0.974192i \(-0.572473\pi\)
0.620921 + 0.783873i \(0.286759\pi\)
\(840\) 0 0
\(841\) 55.7575 + 26.8514i 1.92267 + 0.925910i
\(842\) −6.30443 + 5.02762i −0.217265 + 0.173263i
\(843\) 0 0
\(844\) −9.29395 + 11.6542i −0.319911 + 0.401155i
\(845\) 1.53397 6.72074i 0.0527700 0.231201i
\(846\) 0 0
\(847\) 13.5220 9.92179i 0.464623 0.340917i
\(848\) −6.15977 + 4.91226i −0.211528 + 0.168688i
\(849\) 0 0
\(850\) 0.547742 + 0.125019i 0.0187874 + 0.00428810i
\(851\) 0.572690i 0.0196316i
\(852\) 0 0
\(853\) −43.9508 10.0315i −1.50485 0.343472i −0.610924 0.791690i \(-0.709202\pi\)
−0.893924 + 0.448218i \(0.852059\pi\)
\(854\) 1.45767 2.73959i 0.0498804 0.0937468i
\(855\) 0 0
\(856\) 3.69501 + 16.1889i 0.126293 + 0.553325i
\(857\) −2.57480 3.22870i −0.0879534 0.110290i 0.735908 0.677082i \(-0.236756\pi\)
−0.823861 + 0.566792i \(0.808184\pi\)
\(858\) 0 0
\(859\) 22.1087 5.04617i 0.754339 0.172173i 0.171975 0.985101i \(-0.444985\pi\)
0.582364 + 0.812928i \(0.302128\pi\)
\(860\) −2.97355 13.0280i −0.101397 0.444250i
\(861\) 0 0
\(862\) 4.61660 20.2267i 0.157242 0.688923i
\(863\) 34.9443i 1.18952i 0.803905 + 0.594758i \(0.202752\pi\)
−0.803905 + 0.594758i \(0.797248\pi\)
\(864\) 0 0
\(865\) 3.57331 15.6557i 0.121496 0.532310i
\(866\) −6.93198 + 3.33827i −0.235558 + 0.113439i
\(867\) 0 0
\(868\) 11.4563 + 15.6134i 0.388854 + 0.529954i
\(869\) 17.0324 + 13.5829i 0.577785 + 0.460768i
\(870\) 0 0
\(871\) 3.23483 + 2.57969i 0.109608 + 0.0874096i
\(872\) −4.72548 9.81255i −0.160025 0.332295i
\(873\) 0 0
\(874\) 3.15967 6.56112i 0.106877 0.221933i
\(875\) 24.8078 18.2027i 0.838657 0.615364i
\(876\) 0 0
\(877\) −8.46027 4.07425i −0.285683 0.137578i 0.285554 0.958362i \(-0.407822\pi\)
−0.571238 + 0.820785i \(0.693537\pi\)
\(878\) 8.47802 + 37.1446i 0.286119 + 1.25357i
\(879\) 0 0
\(880\) −2.53436 2.02109i −0.0854334 0.0681308i
\(881\) 14.3251 0.482624 0.241312 0.970448i \(-0.422422\pi\)
0.241312 + 0.970448i \(0.422422\pi\)
\(882\) 0 0
\(883\) −18.7968 −0.632564 −0.316282 0.948665i \(-0.602435\pi\)
−0.316282 + 0.948665i \(0.602435\pi\)
\(884\) 0.463932 + 0.369973i 0.0156037 + 0.0124435i
\(885\) 0 0
\(886\) −3.68692 16.1535i −0.123865 0.542686i
\(887\) −9.47248 4.56170i −0.318055 0.153167i 0.268044 0.963407i \(-0.413623\pi\)
−0.586099 + 0.810240i \(0.699337\pi\)
\(888\) 0 0
\(889\) −7.32720 + 1.36530i −0.245746 + 0.0457907i
\(890\) 4.33343 8.99846i 0.145257 0.301629i
\(891\) 0 0
\(892\) 6.12515 + 12.7190i 0.205085 + 0.425864i
\(893\) −19.4524 15.5128i −0.650951 0.519116i
\(894\) 0 0
\(895\) −7.37138 5.87848i −0.246398 0.196496i
\(896\) 2.42793 1.05127i 0.0811113 0.0351205i
\(897\) 0 0
\(898\) 16.3828 7.88953i 0.546700 0.263277i
\(899\) 15.5275 68.0305i 0.517872 2.26894i
\(900\) 0 0
\(901\) 1.61222i 0.0537109i
\(902\) −0.616349 + 2.70040i −0.0205222 + 0.0899136i
\(903\) 0 0
\(904\) 0.779359 + 3.41459i 0.0259211 + 0.113568i
\(905\) 15.0449 3.43389i 0.500108 0.114146i
\(906\) 0 0
\(907\) −20.5577 25.7785i −0.682607 0.855962i 0.312985 0.949758i \(-0.398671\pi\)
−0.995591 + 0.0937965i \(0.970100\pi\)
\(908\) −3.54475 15.5306i −0.117637 0.515399i
\(909\) 0 0
\(910\) 11.3247 2.11016i 0.375409 0.0699511i
\(911\) −33.9627 7.75176i −1.12523 0.256827i −0.380888 0.924621i \(-0.624382\pi\)
−0.744346 + 0.667794i \(0.767239\pi\)
\(912\) 0 0
\(913\) 15.7835i 0.522358i
\(914\) −28.6429 6.53755i −0.947422 0.216243i
\(915\) 0 0
\(916\) −12.7368 + 10.1572i −0.420835 + 0.335605i
\(917\) 11.3507 + 9.82308i 0.374832 + 0.324387i
\(918\) 0 0
\(919\) 1.75297 7.68026i 0.0578252 0.253349i −0.937751 0.347309i \(-0.887096\pi\)
0.995576 + 0.0939603i \(0.0299527\pi\)
\(920\) 1.26306 1.58382i 0.0416417 0.0522171i
\(921\) 0 0
\(922\) 2.64486 2.10921i 0.0871039 0.0694630i
\(923\) −28.6899 13.8163i −0.944341 0.454771i
\(924\) 0 0
\(925\) 1.04999 0.505649i 0.0345235 0.0166256i
\(926\) 5.85101 12.1497i 0.192276 0.399265i
\(927\) 0 0
\(928\) −8.58932 4.13640i −0.281958 0.135784i
\(929\) −3.25281 + 4.07890i −0.106721 + 0.133824i −0.832324 0.554290i \(-0.812990\pi\)
0.725602 + 0.688114i \(0.241561\pi\)
\(930\) 0 0
\(931\) −27.5534 25.8523i −0.903026 0.847274i
\(932\) 7.91723i 0.259338i
\(933\) 0 0
\(934\) 1.75607 3.64651i 0.0574602 0.119317i
\(935\) −0.646698 + 0.147605i −0.0211493 + 0.00482719i
\(936\) 0 0
\(937\) 14.3858 + 29.8725i 0.469964 + 0.975891i 0.992382 + 0.123201i \(0.0393160\pi\)
−0.522418 + 0.852690i \(0.674970\pi\)
\(938\) 0.987179 3.64367i 0.0322325 0.118970i
\(939\) 0 0
\(940\) −4.31535 5.41128i −0.140751 0.176496i
\(941\) 46.1563 22.2277i 1.50465 0.724602i 0.513594 0.858033i \(-0.328314\pi\)
0.991058 + 0.133431i \(0.0425994\pi\)
\(942\) 0 0
\(943\) −1.68759 0.385181i −0.0549554 0.0125432i
\(944\) −4.13067 + 5.17970i −0.134442 + 0.168585i
\(945\) 0 0
\(946\) −11.9798 15.0222i −0.389497 0.488414i
\(947\) −9.74277 20.2311i −0.316598 0.657422i 0.680566 0.732687i \(-0.261734\pi\)
−0.997164 + 0.0752651i \(0.976020\pi\)
\(948\) 0 0
\(949\) 21.0455 0.683164
\(950\) 14.8192 0.480798
\(951\) 0 0
\(952\) 0.141579 0.522566i 0.00458859 0.0169365i
\(953\) −37.7369 + 8.61320i −1.22242 + 0.279009i −0.784570 0.620040i \(-0.787116\pi\)
−0.437848 + 0.899049i \(0.644259\pi\)
\(954\) 0 0
\(955\) −21.0564 + 16.7919i −0.681370 + 0.543375i
\(956\) −15.9320 + 12.7053i −0.515277 + 0.410919i
\(957\) 0 0
\(958\) −36.6241 + 8.35921i −1.18327 + 0.270074i
\(959\) −9.49721 + 10.9741i −0.306681 + 0.354373i
\(960\) 0 0
\(961\) −22.5753 −0.728235
\(962\) 1.23087 0.0396849
\(963\) 0 0
\(964\) −2.74301 5.69592i −0.0883465 0.183453i
\(965\) −3.83677 4.81116i −0.123510 0.154877i
\(966\) 0 0
\(967\) −1.35041 + 1.69337i −0.0434264 + 0.0544550i −0.803070 0.595884i \(-0.796802\pi\)
0.759644 + 0.650339i \(0.225373\pi\)
\(968\) 6.18015 + 1.41058i 0.198637 + 0.0453377i
\(969\) 0 0
\(970\) 24.4844 11.7911i 0.786146 0.378588i
\(971\) 4.67261 + 5.85927i 0.149951 + 0.188033i 0.851134 0.524949i \(-0.175916\pi\)
−0.701182 + 0.712982i \(0.747344\pi\)
\(972\) 0 0
\(973\) 47.7378 + 1.91909i 1.53040 + 0.0615231i
\(974\) −11.9012 24.7132i −0.381340 0.791860i
\(975\) 0 0
\(976\) 1.14351 0.260999i 0.0366028 0.00835436i
\(977\) −18.1863 + 37.7643i −0.581832 + 1.20819i 0.377527 + 0.925998i \(0.376774\pi\)
−0.959359 + 0.282188i \(0.908940\pi\)
\(978\) 0 0
\(979\) 14.3607i 0.458968i
\(980\) −5.87234 8.71685i −0.187585 0.278449i
\(981\) 0 0
\(982\) −5.02920 + 6.30642i −0.160488 + 0.201246i
\(983\) −24.5500 11.8227i −0.783024 0.377084i −0.000734510 1.00000i \(-0.500234\pi\)
−0.782289 + 0.622915i \(0.785948\pi\)
\(984\) 0 0
\(985\) 9.62191 19.9801i 0.306579 0.636619i
\(986\) −1.75765 + 0.846439i −0.0559749 + 0.0269561i
\(987\) 0 0
\(988\) 14.1017 + 6.79102i 0.448635 + 0.216051i
\(989\) 9.38796 7.48665i 0.298520 0.238062i
\(990\) 0 0
\(991\) −11.0028 + 13.7971i −0.349515 + 0.438279i −0.925250 0.379358i \(-0.876145\pi\)
0.575734 + 0.817637i \(0.304716\pi\)
\(992\) −1.62874 + 7.13600i −0.0517127 + 0.226568i
\(993\) 0 0
\(994\) −1.16703 + 29.0303i −0.0370161 + 0.920784i
\(995\) 22.2022 17.7057i 0.703857 0.561307i
\(996\) 0 0
\(997\) 27.5656 + 6.29167i 0.873012 + 0.199259i 0.635477 0.772120i \(-0.280803\pi\)
0.237535 + 0.971379i \(0.423661\pi\)
\(998\) 3.30200i 0.104523i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.v.a.251.14 yes 96
3.2 odd 2 inner 882.2.v.a.251.3 96
49.41 odd 14 inner 882.2.v.a.629.3 yes 96
147.41 even 14 inner 882.2.v.a.629.14 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.v.a.251.3 96 3.2 odd 2 inner
882.2.v.a.251.14 yes 96 1.1 even 1 trivial
882.2.v.a.629.3 yes 96 49.41 odd 14 inner
882.2.v.a.629.14 yes 96 147.41 even 14 inner