L(s) = 1 | + (0.781 + 0.623i)2-s + (0.222 + 0.974i)4-s + (1.35 + 0.651i)5-s + (1.05 + 2.42i)7-s + (−0.433 + 0.900i)8-s + (0.651 + 1.35i)10-s + (1.68 + 1.34i)11-s + (−2.26 − 1.80i)13-s + (−0.691 + 2.55i)14-s + (−0.900 + 0.433i)16-s + (−0.0455 + 0.199i)17-s + 5.39i·19-s + (−0.334 + 1.46i)20-s + (0.480 + 2.10i)22-s + (−1.31 + 0.300i)23-s + ⋯ |
L(s) = 1 | + (0.552 + 0.440i)2-s + (0.111 + 0.487i)4-s + (0.604 + 0.291i)5-s + (0.397 + 0.917i)7-s + (−0.153 + 0.318i)8-s + (0.206 + 0.427i)10-s + (0.508 + 0.405i)11-s + (−0.628 − 0.501i)13-s + (−0.184 + 0.682i)14-s + (−0.225 + 0.108i)16-s + (−0.0110 + 0.0483i)17-s + 1.23i·19-s + (−0.0747 + 0.327i)20-s + (0.102 + 0.448i)22-s + (−0.274 + 0.0626i)23-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(−0.0734−0.997i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(−0.0734−0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
−0.0734−0.997i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(251,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), −0.0734−0.997i)
|
Particular Values
L(1) |
≈ |
1.61348+1.73671i |
L(21) |
≈ |
1.61348+1.73671i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.781−0.623i)T |
| 3 | 1 |
| 7 | 1+(−1.05−2.42i)T |
good | 5 | 1+(−1.35−0.651i)T+(3.11+3.90i)T2 |
| 11 | 1+(−1.68−1.34i)T+(2.44+10.7i)T2 |
| 13 | 1+(2.26+1.80i)T+(2.89+12.6i)T2 |
| 17 | 1+(0.0455−0.199i)T+(−15.3−7.37i)T2 |
| 19 | 1−5.39iT−19T2 |
| 23 | 1+(1.31−0.300i)T+(20.7−9.97i)T2 |
| 29 | 1+(−9.29−2.12i)T+(26.1+12.5i)T2 |
| 31 | 1+7.31iT−31T2 |
| 37 | 1+(0.0944−0.413i)T+(−33.3−16.0i)T2 |
| 41 | 1+(−1.15−0.556i)T+(25.5+32.0i)T2 |
| 43 | 1+(8.01−3.86i)T+(26.8−33.6i)T2 |
| 47 | 1+(2.87−3.60i)T+(−10.4−45.8i)T2 |
| 53 | 1+(−7.68+1.75i)T+(47.7−22.9i)T2 |
| 59 | 1+(−5.96+2.87i)T+(36.7−46.1i)T2 |
| 61 | 1+(1.14+0.260i)T+(54.9+26.4i)T2 |
| 67 | 1+1.42T+67T2 |
| 71 | 1+(−10.7+2.44i)T+(63.9−30.8i)T2 |
| 73 | 1+(5.67−4.52i)T+(16.2−71.1i)T2 |
| 79 | 1−10.0T+79T2 |
| 83 | 1+(−4.55−5.71i)T+(−18.4+80.9i)T2 |
| 89 | 1+(4.14+5.20i)T+(−19.8+86.7i)T2 |
| 97 | 1+18.0iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15133270455694844449404688161, −9.645664933907851826663659816800, −8.446513932984298222653708543257, −7.87184248604049994525723118997, −6.68596567442632579470243243888, −5.99226274582739406956770550092, −5.21501625491200967957606852342, −4.22347909277725910323043410744, −2.90010114637551658941791329348, −1.90764359612071326234978132699,
1.01213358866575292616218436375, 2.25552841031723085806084641032, 3.54991839723126251980207537547, 4.60490321583488173640370979550, 5.22881208967227920596421747160, 6.50501020950965967066550473230, 7.08209943712051525570404461267, 8.364160455754511380042077031030, 9.234623480360755874903247074997, 10.07078455669481799256280873684