L(s) = 1 | + (0.781 + 0.623i)2-s + (0.222 + 0.974i)4-s + (1.35 + 0.651i)5-s + (1.05 + 2.42i)7-s + (−0.433 + 0.900i)8-s + (0.651 + 1.35i)10-s + (1.68 + 1.34i)11-s + (−2.26 − 1.80i)13-s + (−0.691 + 2.55i)14-s + (−0.900 + 0.433i)16-s + (−0.0455 + 0.199i)17-s + 5.39i·19-s + (−0.334 + 1.46i)20-s + (0.480 + 2.10i)22-s + (−1.31 + 0.300i)23-s + ⋯ |
L(s) = 1 | + (0.552 + 0.440i)2-s + (0.111 + 0.487i)4-s + (0.604 + 0.291i)5-s + (0.397 + 0.917i)7-s + (−0.153 + 0.318i)8-s + (0.206 + 0.427i)10-s + (0.508 + 0.405i)11-s + (−0.628 − 0.501i)13-s + (−0.184 + 0.682i)14-s + (−0.225 + 0.108i)16-s + (−0.0110 + 0.0483i)17-s + 1.23i·19-s + (−0.0747 + 0.327i)20-s + (0.102 + 0.448i)22-s + (−0.274 + 0.0626i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0734 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0734 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61348 + 1.73671i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61348 + 1.73671i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.781 - 0.623i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.05 - 2.42i)T \) |
good | 5 | \( 1 + (-1.35 - 0.651i)T + (3.11 + 3.90i)T^{2} \) |
| 11 | \( 1 + (-1.68 - 1.34i)T + (2.44 + 10.7i)T^{2} \) |
| 13 | \( 1 + (2.26 + 1.80i)T + (2.89 + 12.6i)T^{2} \) |
| 17 | \( 1 + (0.0455 - 0.199i)T + (-15.3 - 7.37i)T^{2} \) |
| 19 | \( 1 - 5.39iT - 19T^{2} \) |
| 23 | \( 1 + (1.31 - 0.300i)T + (20.7 - 9.97i)T^{2} \) |
| 29 | \( 1 + (-9.29 - 2.12i)T + (26.1 + 12.5i)T^{2} \) |
| 31 | \( 1 + 7.31iT - 31T^{2} \) |
| 37 | \( 1 + (0.0944 - 0.413i)T + (-33.3 - 16.0i)T^{2} \) |
| 41 | \( 1 + (-1.15 - 0.556i)T + (25.5 + 32.0i)T^{2} \) |
| 43 | \( 1 + (8.01 - 3.86i)T + (26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (2.87 - 3.60i)T + (-10.4 - 45.8i)T^{2} \) |
| 53 | \( 1 + (-7.68 + 1.75i)T + (47.7 - 22.9i)T^{2} \) |
| 59 | \( 1 + (-5.96 + 2.87i)T + (36.7 - 46.1i)T^{2} \) |
| 61 | \( 1 + (1.14 + 0.260i)T + (54.9 + 26.4i)T^{2} \) |
| 67 | \( 1 + 1.42T + 67T^{2} \) |
| 71 | \( 1 + (-10.7 + 2.44i)T + (63.9 - 30.8i)T^{2} \) |
| 73 | \( 1 + (5.67 - 4.52i)T + (16.2 - 71.1i)T^{2} \) |
| 79 | \( 1 - 10.0T + 79T^{2} \) |
| 83 | \( 1 + (-4.55 - 5.71i)T + (-18.4 + 80.9i)T^{2} \) |
| 89 | \( 1 + (4.14 + 5.20i)T + (-19.8 + 86.7i)T^{2} \) |
| 97 | \( 1 + 18.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.15133270455694844449404688161, −9.645664933907851826663659816800, −8.446513932984298222653708543257, −7.87184248604049994525723118997, −6.68596567442632579470243243888, −5.99226274582739406956770550092, −5.21501625491200967957606852342, −4.22347909277725910323043410744, −2.90010114637551658941791329348, −1.90764359612071326234978132699,
1.01213358866575292616218436375, 2.25552841031723085806084641032, 3.54991839723126251980207537547, 4.60490321583488173640370979550, 5.22881208967227920596421747160, 6.50501020950965967066550473230, 7.08209943712051525570404461267, 8.364160455754511380042077031030, 9.234623480360755874903247074997, 10.07078455669481799256280873684