Properties

Label 2-90e2-1.1-c1-0-16
Degree $2$
Conductor $8100$
Sign $1$
Analytic cond. $64.6788$
Root an. cond. $8.04231$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 6·11-s − 5·13-s − 3·17-s + 2·19-s + 6·23-s − 3·29-s − 4·31-s − 5·37-s + 6·41-s + 10·43-s − 3·49-s − 6·53-s + 12·59-s + 5·61-s − 2·67-s − 6·71-s + 73-s − 12·77-s − 10·79-s + 3·89-s + 10·91-s + 10·97-s − 6·101-s + 16·103-s + 12·107-s − 7·109-s + ⋯
L(s)  = 1  − 0.755·7-s + 1.80·11-s − 1.38·13-s − 0.727·17-s + 0.458·19-s + 1.25·23-s − 0.557·29-s − 0.718·31-s − 0.821·37-s + 0.937·41-s + 1.52·43-s − 3/7·49-s − 0.824·53-s + 1.56·59-s + 0.640·61-s − 0.244·67-s − 0.712·71-s + 0.117·73-s − 1.36·77-s − 1.12·79-s + 0.317·89-s + 1.04·91-s + 1.01·97-s − 0.597·101-s + 1.57·103-s + 1.16·107-s − 0.670·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8100\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(64.6788\)
Root analytic conductor: \(8.04231\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.722108016\)
\(L(\frac12)\) \(\approx\) \(1.722108016\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + 5 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 5 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 - T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.54573129342087076647481470812, −7.11469842903738619770774744094, −6.56731644873899858023492200478, −5.82737610324700040547902196988, −4.98718561034502658454296961526, −4.23085627135447810014209364493, −3.53394769247880554259259655842, −2.71824368801452204048848355470, −1.77311459833770670104944292484, −0.64771684037256430182658665863, 0.64771684037256430182658665863, 1.77311459833770670104944292484, 2.71824368801452204048848355470, 3.53394769247880554259259655842, 4.23085627135447810014209364493, 4.98718561034502658454296961526, 5.82737610324700040547902196988, 6.56731644873899858023492200478, 7.11469842903738619770774744094, 7.54573129342087076647481470812

Graph of the $Z$-function along the critical line