L(s) = 1 | + (1.82 + 1.05i)2-s + (−1.13 + 1.95i)3-s + (1.22 + 2.12i)4-s − 3.60i·5-s + (−4.13 + 2.38i)6-s + (−0.866 + 0.5i)7-s + 0.948i·8-s + (−1.05 − 1.83i)9-s + (3.79 − 6.57i)10-s + (0.767 + 0.443i)11-s − 5.53·12-s + (−1.17 + 3.40i)13-s − 2.10·14-s + (7.05 + 4.07i)15-s + (1.44 − 2.51i)16-s + (−2.48 − 4.29i)17-s + ⋯ |
L(s) = 1 | + (1.29 + 0.745i)2-s + (−0.652 + 1.13i)3-s + (0.612 + 1.06i)4-s − 1.61i·5-s + (−1.68 + 0.973i)6-s + (−0.327 + 0.188i)7-s + 0.335i·8-s + (−0.352 − 0.610i)9-s + (1.20 − 2.08i)10-s + (0.231 + 0.133i)11-s − 1.59·12-s + (−0.325 + 0.945i)13-s − 0.563·14-s + (1.82 + 1.05i)15-s + (0.362 − 0.627i)16-s + (−0.601 − 1.04i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.313 - 0.949i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.313 - 0.949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.18038 + 0.853527i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.18038 + 0.853527i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (1.17 - 3.40i)T \) |
good | 2 | \( 1 + (-1.82 - 1.05i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.13 - 1.95i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 3.60iT - 5T^{2} \) |
| 11 | \( 1 + (-0.767 - 0.443i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.48 + 4.29i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.06 + 1.18i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.92 - 3.34i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.640 - 1.11i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 8.46iT - 31T^{2} \) |
| 37 | \( 1 + (8.34 + 4.81i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-10.4 - 6.04i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.82 + 3.15i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 2.98iT - 47T^{2} \) |
| 53 | \( 1 - 4.92T + 53T^{2} \) |
| 59 | \( 1 + (-6.34 + 3.66i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.769 - 1.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.29 - 4.21i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.58 - 3.22i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 7.14iT - 73T^{2} \) |
| 79 | \( 1 - 0.757T + 79T^{2} \) |
| 83 | \( 1 + 4.76iT - 83T^{2} \) |
| 89 | \( 1 + (-3.13 - 1.80i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.401 - 0.231i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.30245090119271805595220182504, −13.34785658818790305941839831742, −12.32207270096983413158476659352, −11.55513022146552498576152487929, −9.765348406127732885237439298572, −8.968856041429115878976106315126, −7.04840669033812002321486487885, −5.50068031658844402984369694698, −4.89957598556280342503211753749, −3.99794790832158864949485194602,
2.37281809325816280058643494239, 3.74834103153718575203641713323, 5.82471067815063300170082587770, 6.53703218661471713830901336496, 7.74469528359523336862338933431, 10.26392173641458628449549033867, 11.03144231686742927919000163645, 11.93724755004018094311959272545, 12.81055390391385226140366309789, 13.61120391086656579978546598347