L(s) = 1 | + (1.82 + 1.05i)2-s + (−1.13 + 1.95i)3-s + (1.22 + 2.12i)4-s − 3.60i·5-s + (−4.13 + 2.38i)6-s + (−0.866 + 0.5i)7-s + 0.948i·8-s + (−1.05 − 1.83i)9-s + (3.79 − 6.57i)10-s + (0.767 + 0.443i)11-s − 5.53·12-s + (−1.17 + 3.40i)13-s − 2.10·14-s + (7.05 + 4.07i)15-s + (1.44 − 2.51i)16-s + (−2.48 − 4.29i)17-s + ⋯ |
L(s) = 1 | + (1.29 + 0.745i)2-s + (−0.652 + 1.13i)3-s + (0.612 + 1.06i)4-s − 1.61i·5-s + (−1.68 + 0.973i)6-s + (−0.327 + 0.188i)7-s + 0.335i·8-s + (−0.352 − 0.610i)9-s + (1.20 − 2.08i)10-s + (0.231 + 0.133i)11-s − 1.59·12-s + (−0.325 + 0.945i)13-s − 0.563·14-s + (1.82 + 1.05i)15-s + (0.362 − 0.627i)16-s + (−0.601 − 1.04i)17-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)(0.313−0.949i)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)(0.313−0.949i)Λ(1−s)
Degree: |
2 |
Conductor: |
91
= 7⋅13
|
Sign: |
0.313−0.949i
|
Analytic conductor: |
0.726638 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ91(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 91, ( :1/2), 0.313−0.949i)
|
Particular Values
L(1) |
≈ |
1.18038+0.853527i |
L(21) |
≈ |
1.18038+0.853527i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(0.866−0.5i)T |
| 13 | 1+(1.17−3.40i)T |
good | 2 | 1+(−1.82−1.05i)T+(1+1.73i)T2 |
| 3 | 1+(1.13−1.95i)T+(−1.5−2.59i)T2 |
| 5 | 1+3.60iT−5T2 |
| 11 | 1+(−0.767−0.443i)T+(5.5+9.52i)T2 |
| 17 | 1+(2.48+4.29i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.06+1.18i)T+(9.5−16.4i)T2 |
| 23 | 1+(1.92−3.34i)T+(−11.5−19.9i)T2 |
| 29 | 1+(0.640−1.11i)T+(−14.5−25.1i)T2 |
| 31 | 1−8.46iT−31T2 |
| 37 | 1+(8.34+4.81i)T+(18.5+32.0i)T2 |
| 41 | 1+(−10.4−6.04i)T+(20.5+35.5i)T2 |
| 43 | 1+(1.82+3.15i)T+(−21.5+37.2i)T2 |
| 47 | 1+2.98iT−47T2 |
| 53 | 1−4.92T+53T2 |
| 59 | 1+(−6.34+3.66i)T+(29.5−51.0i)T2 |
| 61 | 1+(−0.769−1.33i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7.29−4.21i)T+(33.5+58.0i)T2 |
| 71 | 1+(5.58−3.22i)T+(35.5−61.4i)T2 |
| 73 | 1−7.14iT−73T2 |
| 79 | 1−0.757T+79T2 |
| 83 | 1+4.76iT−83T2 |
| 89 | 1+(−3.13−1.80i)T+(44.5+77.0i)T2 |
| 97 | 1+(0.401−0.231i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.30245090119271805595220182504, −13.34785658818790305941839831742, −12.32207270096983413158476659352, −11.55513022146552498576152487929, −9.765348406127732885237439298572, −8.968856041429115878976106315126, −7.04840669033812002321486487885, −5.50068031658844402984369694698, −4.89957598556280342503211753749, −3.99794790832158864949485194602,
2.37281809325816280058643494239, 3.74834103153718575203641713323, 5.82471067815063300170082587770, 6.53703218661471713830901336496, 7.74469528359523336862338933431, 10.26392173641458628449549033867, 11.03144231686742927919000163645, 11.93724755004018094311959272545, 12.81055390391385226140366309789, 13.61120391086656579978546598347