Properties

Label 2-91-13.4-c1-0-5
Degree 22
Conductor 9191
Sign 0.383+0.923i-0.383 + 0.923i
Analytic cond. 0.7266380.726638
Root an. cond. 0.8524310.852431
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.20 − 0.692i)2-s + (1.41 − 2.44i)3-s + (−0.0395 − 0.0685i)4-s + 0.518i·5-s + (−3.39 + 1.95i)6-s + (−0.866 + 0.5i)7-s + 2.88i·8-s + (−2.49 − 4.31i)9-s + (0.359 − 0.622i)10-s + (1.40 + 0.812i)11-s − 0.223·12-s + (1.42 − 3.31i)13-s + 1.38·14-s + (1.26 + 0.733i)15-s + (1.91 − 3.32i)16-s + (0.974 + 1.68i)17-s + ⋯
L(s)  = 1  + (−0.848 − 0.490i)2-s + (0.815 − 1.41i)3-s + (−0.0197 − 0.0342i)4-s + 0.232i·5-s + (−1.38 + 0.799i)6-s + (−0.327 + 0.188i)7-s + 1.01i·8-s + (−0.830 − 1.43i)9-s + (0.113 − 0.196i)10-s + (0.424 + 0.244i)11-s − 0.0645·12-s + (0.395 − 0.918i)13-s + 0.370·14-s + (0.327 + 0.189i)15-s + (0.479 − 0.830i)16-s + (0.236 + 0.409i)17-s + ⋯

Functional equation

Λ(s)=(91s/2ΓC(s)L(s)=((0.383+0.923i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.383 + 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(91s/2ΓC(s+1/2)L(s)=((0.383+0.923i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.383 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 9191    =    7137 \cdot 13
Sign: 0.383+0.923i-0.383 + 0.923i
Analytic conductor: 0.7266380.726638
Root analytic conductor: 0.8524310.852431
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ91(43,)\chi_{91} (43, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 91, ( :1/2), 0.383+0.923i)(2,\ 91,\ (\ :1/2),\ -0.383 + 0.923i)

Particular Values

L(1)L(1) \approx 0.4326420.648347i0.432642 - 0.648347i
L(12)L(\frac12) \approx 0.4326420.648347i0.432642 - 0.648347i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad7 1+(0.8660.5i)T 1 + (0.866 - 0.5i)T
13 1+(1.42+3.31i)T 1 + (-1.42 + 3.31i)T
good2 1+(1.20+0.692i)T+(1+1.73i)T2 1 + (1.20 + 0.692i)T + (1 + 1.73i)T^{2}
3 1+(1.41+2.44i)T+(1.52.59i)T2 1 + (-1.41 + 2.44i)T + (-1.5 - 2.59i)T^{2}
5 10.518iT5T2 1 - 0.518iT - 5T^{2}
11 1+(1.400.812i)T+(5.5+9.52i)T2 1 + (-1.40 - 0.812i)T + (5.5 + 9.52i)T^{2}
17 1+(0.9741.68i)T+(8.5+14.7i)T2 1 + (-0.974 - 1.68i)T + (-8.5 + 14.7i)T^{2}
19 1+(2.15+1.24i)T+(9.516.4i)T2 1 + (-2.15 + 1.24i)T + (9.5 - 16.4i)T^{2}
23 1+(4.577.91i)T+(11.519.9i)T2 1 + (4.57 - 7.91i)T + (-11.5 - 19.9i)T^{2}
29 1+(2.61+4.52i)T+(14.525.1i)T2 1 + (-2.61 + 4.52i)T + (-14.5 - 25.1i)T^{2}
31 15.79iT31T2 1 - 5.79iT - 31T^{2}
37 1+(8.85+5.11i)T+(18.5+32.0i)T2 1 + (8.85 + 5.11i)T + (18.5 + 32.0i)T^{2}
41 1+(3.642.10i)T+(20.5+35.5i)T2 1 + (-3.64 - 2.10i)T + (20.5 + 35.5i)T^{2}
43 1+(0.498+0.863i)T+(21.5+37.2i)T2 1 + (0.498 + 0.863i)T + (-21.5 + 37.2i)T^{2}
47 14.51iT47T2 1 - 4.51iT - 47T^{2}
53 1+8.89T+53T2 1 + 8.89T + 53T^{2}
59 1+(5.373.10i)T+(29.551.0i)T2 1 + (5.37 - 3.10i)T + (29.5 - 51.0i)T^{2}
61 1+(6.7311.6i)T+(30.5+52.8i)T2 1 + (-6.73 - 11.6i)T + (-30.5 + 52.8i)T^{2}
67 1+(7.25+4.18i)T+(33.5+58.0i)T2 1 + (7.25 + 4.18i)T + (33.5 + 58.0i)T^{2}
71 1+(4.502.59i)T+(35.561.4i)T2 1 + (4.50 - 2.59i)T + (35.5 - 61.4i)T^{2}
73 111.8iT73T2 1 - 11.8iT - 73T^{2}
79 10.982T+79T2 1 - 0.982T + 79T^{2}
83 1+8.91iT83T2 1 + 8.91iT - 83T^{2}
89 1+(10.4+6.00i)T+(44.5+77.0i)T2 1 + (10.4 + 6.00i)T + (44.5 + 77.0i)T^{2}
97 1+(3.82+2.21i)T+(48.584.0i)T2 1 + (-3.82 + 2.21i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.75452316152219879934118989729, −12.67448349900212106314621502601, −11.69950957571609746995082346777, −10.34315023876456713962016632621, −9.188479679466817661547777377150, −8.260960236549061719177728715997, −7.28173288126409391739064551400, −5.83677852176420868914421980283, −3.02083321004080896155170308069, −1.45390583995939883720046521229, 3.43145108164336054455557537863, 4.54816144972298883613147924171, 6.63589867357642471318704246595, 8.203943044969050086982157961538, 8.962296011531587274047733800958, 9.701002453378307126912968250179, 10.64757254357678628578872970457, 12.27393795288480786418426784612, 13.77417865246612545996832831438, 14.56318564934029895581166298795

Graph of the ZZ-function along the critical line