L(s) = 1 | + (−1.20 − 0.692i)2-s + (1.41 − 2.44i)3-s + (−0.0395 − 0.0685i)4-s + 0.518i·5-s + (−3.39 + 1.95i)6-s + (−0.866 + 0.5i)7-s + 2.88i·8-s + (−2.49 − 4.31i)9-s + (0.359 − 0.622i)10-s + (1.40 + 0.812i)11-s − 0.223·12-s + (1.42 − 3.31i)13-s + 1.38·14-s + (1.26 + 0.733i)15-s + (1.91 − 3.32i)16-s + (0.974 + 1.68i)17-s + ⋯ |
L(s) = 1 | + (−0.848 − 0.490i)2-s + (0.815 − 1.41i)3-s + (−0.0197 − 0.0342i)4-s + 0.232i·5-s + (−1.38 + 0.799i)6-s + (−0.327 + 0.188i)7-s + 1.01i·8-s + (−0.830 − 1.43i)9-s + (0.113 − 0.196i)10-s + (0.424 + 0.244i)11-s − 0.0645·12-s + (0.395 − 0.918i)13-s + 0.370·14-s + (0.327 + 0.189i)15-s + (0.479 − 0.830i)16-s + (0.236 + 0.409i)17-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)(−0.383+0.923i)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)(−0.383+0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
91
= 7⋅13
|
Sign: |
−0.383+0.923i
|
Analytic conductor: |
0.726638 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ91(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 91, ( :1/2), −0.383+0.923i)
|
Particular Values
L(1) |
≈ |
0.432642−0.648347i |
L(21) |
≈ |
0.432642−0.648347i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(0.866−0.5i)T |
| 13 | 1+(−1.42+3.31i)T |
good | 2 | 1+(1.20+0.692i)T+(1+1.73i)T2 |
| 3 | 1+(−1.41+2.44i)T+(−1.5−2.59i)T2 |
| 5 | 1−0.518iT−5T2 |
| 11 | 1+(−1.40−0.812i)T+(5.5+9.52i)T2 |
| 17 | 1+(−0.974−1.68i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−2.15+1.24i)T+(9.5−16.4i)T2 |
| 23 | 1+(4.57−7.91i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.61+4.52i)T+(−14.5−25.1i)T2 |
| 31 | 1−5.79iT−31T2 |
| 37 | 1+(8.85+5.11i)T+(18.5+32.0i)T2 |
| 41 | 1+(−3.64−2.10i)T+(20.5+35.5i)T2 |
| 43 | 1+(0.498+0.863i)T+(−21.5+37.2i)T2 |
| 47 | 1−4.51iT−47T2 |
| 53 | 1+8.89T+53T2 |
| 59 | 1+(5.37−3.10i)T+(29.5−51.0i)T2 |
| 61 | 1+(−6.73−11.6i)T+(−30.5+52.8i)T2 |
| 67 | 1+(7.25+4.18i)T+(33.5+58.0i)T2 |
| 71 | 1+(4.50−2.59i)T+(35.5−61.4i)T2 |
| 73 | 1−11.8iT−73T2 |
| 79 | 1−0.982T+79T2 |
| 83 | 1+8.91iT−83T2 |
| 89 | 1+(10.4+6.00i)T+(44.5+77.0i)T2 |
| 97 | 1+(−3.82+2.21i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.75452316152219879934118989729, −12.67448349900212106314621502601, −11.69950957571609746995082346777, −10.34315023876456713962016632621, −9.188479679466817661547777377150, −8.260960236549061719177728715997, −7.28173288126409391739064551400, −5.83677852176420868914421980283, −3.02083321004080896155170308069, −1.45390583995939883720046521229,
3.43145108164336054455557537863, 4.54816144972298883613147924171, 6.63589867357642471318704246595, 8.203943044969050086982157961538, 8.962296011531587274047733800958, 9.701002453378307126912968250179, 10.64757254357678628578872970457, 12.27393795288480786418426784612, 13.77417865246612545996832831438, 14.56318564934029895581166298795