L(s) = 1 | − 3-s − 2·5-s + 9-s + 6·13-s + 2·15-s − 6·17-s + 19-s − 4·23-s − 25-s − 27-s + 2·29-s − 8·31-s − 10·37-s − 6·39-s − 2·41-s + 4·43-s − 2·45-s − 12·47-s − 7·49-s + 6·51-s − 6·53-s − 57-s + 12·59-s − 2·61-s − 12·65-s + 4·67-s + 4·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s + 1/3·9-s + 1.66·13-s + 0.516·15-s − 1.45·17-s + 0.229·19-s − 0.834·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s − 1.43·31-s − 1.64·37-s − 0.960·39-s − 0.312·41-s + 0.609·43-s − 0.298·45-s − 1.75·47-s − 49-s + 0.840·51-s − 0.824·53-s − 0.132·57-s + 1.56·59-s − 0.256·61-s − 1.48·65-s + 0.488·67-s + 0.481·69-s + ⋯ |
Λ(s)=(=(912s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(912s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
| 19 | 1−T |
good | 5 | 1+2T+pT2 |
| 7 | 1+pT2 |
| 11 | 1+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1+6T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−2T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+10T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+12T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−10T+pT2 |
| 79 | 1+pT2 |
| 83 | 1+16T+pT2 |
| 89 | 1+2T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.717867966311693207189859225084, −8.673289841767403383115719575464, −8.099644677533565214444467559710, −6.98236656892345640095319736227, −6.30774150521524867405980638808, −5.28029214515602867786662657712, −4.16838172205224943400021226417, −3.49609663069962101813276746331, −1.72203721066548968493435337820, 0,
1.72203721066548968493435337820, 3.49609663069962101813276746331, 4.16838172205224943400021226417, 5.28029214515602867786662657712, 6.30774150521524867405980638808, 6.98236656892345640095319736227, 8.099644677533565214444467559710, 8.673289841767403383115719575464, 9.717867966311693207189859225084