Properties

Label 2-912-1.1-c1-0-11
Degree $2$
Conductor $912$
Sign $-1$
Analytic cond. $7.28235$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 6·13-s + 2·15-s − 6·17-s + 19-s − 4·23-s − 25-s − 27-s + 2·29-s − 8·31-s − 10·37-s − 6·39-s − 2·41-s + 4·43-s − 2·45-s − 12·47-s − 7·49-s + 6·51-s − 6·53-s − 57-s + 12·59-s − 2·61-s − 12·65-s + 4·67-s + 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 1.66·13-s + 0.516·15-s − 1.45·17-s + 0.229·19-s − 0.834·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s − 1.43·31-s − 1.64·37-s − 0.960·39-s − 0.312·41-s + 0.609·43-s − 0.298·45-s − 1.75·47-s − 49-s + 0.840·51-s − 0.824·53-s − 0.132·57-s + 1.56·59-s − 0.256·61-s − 1.48·65-s + 0.488·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(912\)    =    \(2^{4} \cdot 3 \cdot 19\)
Sign: $-1$
Analytic conductor: \(7.28235\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 912,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 16 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.717867966311693207189859225084, −8.673289841767403383115719575464, −8.099644677533565214444467559710, −6.98236656892345640095319736227, −6.30774150521524867405980638808, −5.28029214515602867786662657712, −4.16838172205224943400021226417, −3.49609663069962101813276746331, −1.72203721066548968493435337820, 0, 1.72203721066548968493435337820, 3.49609663069962101813276746331, 4.16838172205224943400021226417, 5.28029214515602867786662657712, 6.30774150521524867405980638808, 6.98236656892345640095319736227, 8.099644677533565214444467559710, 8.673289841767403383115719575464, 9.717867966311693207189859225084

Graph of the $Z$-function along the critical line