L(s) = 1 | − 3-s − 2·5-s + 9-s + 6·13-s + 2·15-s − 6·17-s + 19-s − 4·23-s − 25-s − 27-s + 2·29-s − 8·31-s − 10·37-s − 6·39-s − 2·41-s + 4·43-s − 2·45-s − 12·47-s − 7·49-s + 6·51-s − 6·53-s − 57-s + 12·59-s − 2·61-s − 12·65-s + 4·67-s + 4·69-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.894·5-s + 1/3·9-s + 1.66·13-s + 0.516·15-s − 1.45·17-s + 0.229·19-s − 0.834·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s − 1.43·31-s − 1.64·37-s − 0.960·39-s − 0.312·41-s + 0.609·43-s − 0.298·45-s − 1.75·47-s − 49-s + 0.840·51-s − 0.824·53-s − 0.132·57-s + 1.56·59-s − 0.256·61-s − 1.48·65-s + 0.488·67-s + 0.481·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 19 | \( 1 - T \) |
good | 5 | \( 1 + 2 T + p T^{2} \) |
| 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - 6 T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + 8 T + p T^{2} \) |
| 37 | \( 1 + 10 T + p T^{2} \) |
| 41 | \( 1 + 2 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + 12 T + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 + 2 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 + 16 T + p T^{2} \) |
| 89 | \( 1 + 2 T + p T^{2} \) |
| 97 | \( 1 - 10 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.717867966311693207189859225084, −8.673289841767403383115719575464, −8.099644677533565214444467559710, −6.98236656892345640095319736227, −6.30774150521524867405980638808, −5.28029214515602867786662657712, −4.16838172205224943400021226417, −3.49609663069962101813276746331, −1.72203721066548968493435337820, 0,
1.72203721066548968493435337820, 3.49609663069962101813276746331, 4.16838172205224943400021226417, 5.28029214515602867786662657712, 6.30774150521524867405980638808, 6.98236656892345640095319736227, 8.099644677533565214444467559710, 8.673289841767403383115719575464, 9.717867966311693207189859225084