Properties

Label 2-912-1.1-c5-0-8
Degree $2$
Conductor $912$
Sign $1$
Analytic cond. $146.270$
Root an. cond. $12.0942$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s − 69.8·5-s + 147.·7-s + 81·9-s − 294.·11-s − 1.11e3·13-s + 628.·15-s + 1.89e3·17-s − 361·19-s − 1.33e3·21-s − 828.·23-s + 1.75e3·25-s − 729·27-s + 1.43e3·29-s − 1.02e4·31-s + 2.65e3·33-s − 1.03e4·35-s + 1.42e4·37-s + 1.00e4·39-s − 1.37e4·41-s + 701.·43-s − 5.65e3·45-s + 3.56e3·47-s + 5.07e3·49-s − 1.70e4·51-s − 2.94e4·53-s + 2.05e4·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.24·5-s + 1.14·7-s + 0.333·9-s − 0.733·11-s − 1.82·13-s + 0.721·15-s + 1.59·17-s − 0.229·19-s − 0.658·21-s − 0.326·23-s + 0.560·25-s − 0.192·27-s + 0.317·29-s − 1.92·31-s + 0.423·33-s − 1.42·35-s + 1.71·37-s + 1.05·39-s − 1.27·41-s + 0.0578·43-s − 0.416·45-s + 0.235·47-s + 0.301·49-s − 0.918·51-s − 1.43·53-s + 0.916·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(912\)    =    \(2^{4} \cdot 3 \cdot 19\)
Sign: $1$
Analytic conductor: \(146.270\)
Root analytic conductor: \(12.0942\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 912,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.7185496794\)
\(L(\frac12)\) \(\approx\) \(0.7185496794\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 9T \)
19 \( 1 + 361T \)
good5 \( 1 + 69.8T + 3.12e3T^{2} \)
7 \( 1 - 147.T + 1.68e4T^{2} \)
11 \( 1 + 294.T + 1.61e5T^{2} \)
13 \( 1 + 1.11e3T + 3.71e5T^{2} \)
17 \( 1 - 1.89e3T + 1.41e6T^{2} \)
23 \( 1 + 828.T + 6.43e6T^{2} \)
29 \( 1 - 1.43e3T + 2.05e7T^{2} \)
31 \( 1 + 1.02e4T + 2.86e7T^{2} \)
37 \( 1 - 1.42e4T + 6.93e7T^{2} \)
41 \( 1 + 1.37e4T + 1.15e8T^{2} \)
43 \( 1 - 701.T + 1.47e8T^{2} \)
47 \( 1 - 3.56e3T + 2.29e8T^{2} \)
53 \( 1 + 2.94e4T + 4.18e8T^{2} \)
59 \( 1 + 3.06e4T + 7.14e8T^{2} \)
61 \( 1 - 4.03e4T + 8.44e8T^{2} \)
67 \( 1 + 6.37e4T + 1.35e9T^{2} \)
71 \( 1 - 6.08e4T + 1.80e9T^{2} \)
73 \( 1 + 2.59e4T + 2.07e9T^{2} \)
79 \( 1 + 3.92e4T + 3.07e9T^{2} \)
83 \( 1 + 9.11e4T + 3.93e9T^{2} \)
89 \( 1 - 1.73e4T + 5.58e9T^{2} \)
97 \( 1 - 1.25e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.476686937765708534219278422262, −8.051539890774414030601048727174, −7.78192688407917461265393453668, −7.11030405443795111187365034674, −5.61715324944171958902494650470, −4.95543477296360769315175367153, −4.21936332544465385039572758238, −3.00866459229885942021109290571, −1.71355071877995380878807591149, −0.38526182465565005230588022823, 0.38526182465565005230588022823, 1.71355071877995380878807591149, 3.00866459229885942021109290571, 4.21936332544465385039572758238, 4.95543477296360769315175367153, 5.61715324944171958902494650470, 7.11030405443795111187365034674, 7.78192688407917461265393453668, 8.051539890774414030601048727174, 9.476686937765708534219278422262

Graph of the $Z$-function along the critical line