Properties

Label 912.6.a.v
Level 912912
Weight 66
Character orbit 912.a
Self dual yes
Analytic conductor 146.270146.270
Analytic rank 00
Dimension 55
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,6,Mod(1,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 912=24319 912 = 2^{4} \cdot 3 \cdot 19
Weight: k k == 6 6
Character orbit: [χ][\chi] == 912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 146.270043669146.270043669
Analytic rank: 00
Dimension: 55
Coefficient field: Q[x]/(x5)\mathbb{Q}[x]/(x^{5} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x52x47184x376134x2+12883743x+275533272 x^{5} - 2x^{4} - 7184x^{3} - 76134x^{2} + 12883743x + 275533272 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 243 2^{4}\cdot 3
Twist minimal: no (minimal twist has level 228)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β3,β41,\beta_1,\beta_2,\beta_3,\beta_4 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q9q3+(β11)q5+(β3+β111)q7+81q9+(β4+2β155)q11+(β4+2β3+β2++88)q13+(9β1+9)q15++(81β4+162β14455)q99+O(q100) q - 9 q^{3} + ( - \beta_1 - 1) q^{5} + ( - \beta_{3} + \beta_1 - 11) q^{7} + 81 q^{9} + (\beta_{4} + 2 \beta_1 - 55) q^{11} + (\beta_{4} + 2 \beta_{3} + \beta_{2} + \cdots + 88) q^{13} + (9 \beta_1 + 9) q^{15}+ \cdots + (81 \beta_{4} + 162 \beta_1 - 4455) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 5q45q36q554q7+405q9272q11+440q13+54q15+1940q171805q19+486q213224q23+7313q253645q27+7524q2911774q31+2448q33+22032q99+O(q100) 5 q - 45 q^{3} - 6 q^{5} - 54 q^{7} + 405 q^{9} - 272 q^{11} + 440 q^{13} + 54 q^{15} + 1940 q^{17} - 1805 q^{19} + 486 q^{21} - 3224 q^{23} + 7313 q^{25} - 3645 q^{27} + 7524 q^{29} - 11774 q^{31} + 2448 q^{33}+ \cdots - 22032 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x52x47184x376134x2+12883743x+275533272 x^{5} - 2x^{4} - 7184x^{3} - 76134x^{2} + 12883743x + 275533272 : Copy content Toggle raw display

β1\beta_{1}== (31ν4+85ν329759ν23271437ν242224776)/2387520 ( 31\nu^{4} + 85\nu^{3} - 29759\nu^{2} - 3271437\nu - 242224776 ) / 2387520 Copy content Toggle raw display
β2\beta_{2}== (67ν4+4095ν3+312483ν28328551ν414802968)/795840 ( -67\nu^{4} + 4095\nu^{3} + 312483\nu^{2} - 8328551\nu - 414802968 ) / 795840 Copy content Toggle raw display
β3\beta_{3}== (17ν4+1237ν3+90769ν24258221ν148185864)/238752 ( -17\nu^{4} + 1237\nu^{3} + 90769\nu^{2} - 4258221\nu - 148185864 ) / 238752 Copy content Toggle raw display
β4\beta_{4}== (127ν42219ν3748319ν2+7774707ν+937268856)/477504 ( 127\nu^{4} - 2219\nu^{3} - 748319\nu^{2} + 7774707\nu + 937268856 ) / 477504 Copy content Toggle raw display
ν\nu== (β3+β2+β1+2)/6 ( -\beta_{3} + \beta_{2} + \beta _1 + 2 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (6β425β3+19β2+109β1+17222)/6 ( -6\beta_{4} - 25\beta_{3} + 19\beta_{2} + 109\beta _1 + 17222 ) / 6 Copy content Toggle raw display
ν3\nu^{3}== (348β42149β3+3613β2+4513β1+324122)/6 ( 348\beta_{4} - 2149\beta_{3} + 3613\beta_{2} + 4513\beta _1 + 324122 ) / 6 Copy content Toggle raw display
ν4\nu^{4}== (6714β4123637β3+113863β2+659893β1+62737118)/6 ( -6714\beta_{4} - 123637\beta_{3} + 113863\beta_{2} + 659893\beta _1 + 62737118 ) / 6 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
71.6033
−57.2380
−43.7048
−26.5652
57.9047
0 −9.00000 0 −91.9065 0 −1.91671 0 81.0000 0
1.2 0 −9.00000 0 −69.8269 0 147.923 0 81.0000 0
1.3 0 −9.00000 0 19.9765 0 −224.674 0 81.0000 0
1.4 0 −9.00000 0 67.0515 0 −67.8869 0 81.0000 0
1.5 0 −9.00000 0 68.7054 0 92.5541 0 81.0000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1919 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.6.a.v 5
4.b odd 2 1 228.6.a.d 5
12.b even 2 1 684.6.a.f 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
228.6.a.d 5 4.b odd 2 1
684.6.a.f 5 12.b even 2 1
912.6.a.v 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T55+6T5411451T53+92232T52+32084460T5590593248 T_{5}^{5} + 6T_{5}^{4} - 11451T_{5}^{3} + 92232T_{5}^{2} + 32084460T_{5} - 590593248 acting on S6new(Γ0(912))S_{6}^{\mathrm{new}}(\Gamma_0(912)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T5 T^{5} Copy content Toggle raw display
33 (T+9)5 (T + 9)^{5} Copy content Toggle raw display
55 T5+6T4+590593248 T^{5} + 6 T^{4} + \cdots - 590593248 Copy content Toggle raw display
77 T5+54T4++400244992 T^{5} + 54 T^{4} + \cdots + 400244992 Copy content Toggle raw display
1111 T5++14781508675200 T^{5} + \cdots + 14781508675200 Copy content Toggle raw display
1313 T5+8001780630720 T^{5} + \cdots - 8001780630720 Copy content Toggle raw display
1717 T5++146751918996600 T^{5} + \cdots + 146751918996600 Copy content Toggle raw display
1919 (T+361)5 (T + 361)^{5} Copy content Toggle raw display
2323 T5++14 ⁣ ⁣04 T^{5} + \cdots + 14\!\cdots\!04 Copy content Toggle raw display
2929 T5+11 ⁣ ⁣92 T^{5} + \cdots - 11\!\cdots\!92 Copy content Toggle raw display
3131 T5++10 ⁣ ⁣40 T^{5} + \cdots + 10\!\cdots\!40 Copy content Toggle raw display
3737 T5+44 ⁣ ⁣84 T^{5} + \cdots - 44\!\cdots\!84 Copy content Toggle raw display
4141 T5+27 ⁣ ⁣76 T^{5} + \cdots - 27\!\cdots\!76 Copy content Toggle raw display
4343 T5++54 ⁣ ⁣16 T^{5} + \cdots + 54\!\cdots\!16 Copy content Toggle raw display
4747 T5+12 ⁣ ⁣88 T^{5} + \cdots - 12\!\cdots\!88 Copy content Toggle raw display
5353 T5++18 ⁣ ⁣32 T^{5} + \cdots + 18\!\cdots\!32 Copy content Toggle raw display
5959 T5++50 ⁣ ⁣76 T^{5} + \cdots + 50\!\cdots\!76 Copy content Toggle raw display
6161 T5+67 ⁣ ⁣80 T^{5} + \cdots - 67\!\cdots\!80 Copy content Toggle raw display
6767 T5++96 ⁣ ⁣00 T^{5} + \cdots + 96\!\cdots\!00 Copy content Toggle raw display
7171 T5++91 ⁣ ⁣28 T^{5} + \cdots + 91\!\cdots\!28 Copy content Toggle raw display
7373 T5+22 ⁣ ⁣88 T^{5} + \cdots - 22\!\cdots\!88 Copy content Toggle raw display
7979 T5+62 ⁣ ⁣48 T^{5} + \cdots - 62\!\cdots\!48 Copy content Toggle raw display
8383 T5+39 ⁣ ⁣76 T^{5} + \cdots - 39\!\cdots\!76 Copy content Toggle raw display
8989 T5++61 ⁣ ⁣40 T^{5} + \cdots + 61\!\cdots\!40 Copy content Toggle raw display
9797 T5+97 ⁣ ⁣00 T^{5} + \cdots - 97\!\cdots\!00 Copy content Toggle raw display
show more
show less