Properties

Label 912.6.a.v
Level $912$
Weight $6$
Character orbit 912.a
Self dual yes
Analytic conductor $146.270$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [912,6,Mod(1,912)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(912, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("912.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 912 = 2^{4} \cdot 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 912.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.270043669\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 7184x^{3} - 76134x^{2} + 12883743x + 275533272 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 228)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 q^{3} + ( - \beta_1 - 1) q^{5} + ( - \beta_{3} + \beta_1 - 11) q^{7} + 81 q^{9} + (\beta_{4} + 2 \beta_1 - 55) q^{11} + (\beta_{4} + 2 \beta_{3} + \beta_{2} + \cdots + 88) q^{13} + (9 \beta_1 + 9) q^{15}+ \cdots + (81 \beta_{4} + 162 \beta_1 - 4455) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 45 q^{3} - 6 q^{5} - 54 q^{7} + 405 q^{9} - 272 q^{11} + 440 q^{13} + 54 q^{15} + 1940 q^{17} - 1805 q^{19} + 486 q^{21} - 3224 q^{23} + 7313 q^{25} - 3645 q^{27} + 7524 q^{29} - 11774 q^{31} + 2448 q^{33}+ \cdots - 22032 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 7184x^{3} - 76134x^{2} + 12883743x + 275533272 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 31\nu^{4} + 85\nu^{3} - 29759\nu^{2} - 3271437\nu - 242224776 ) / 2387520 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -67\nu^{4} + 4095\nu^{3} + 312483\nu^{2} - 8328551\nu - 414802968 ) / 795840 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -17\nu^{4} + 1237\nu^{3} + 90769\nu^{2} - 4258221\nu - 148185864 ) / 238752 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 127\nu^{4} - 2219\nu^{3} - 748319\nu^{2} + 7774707\nu + 937268856 ) / 477504 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} + \beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -6\beta_{4} - 25\beta_{3} + 19\beta_{2} + 109\beta _1 + 17222 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 348\beta_{4} - 2149\beta_{3} + 3613\beta_{2} + 4513\beta _1 + 324122 ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -6714\beta_{4} - 123637\beta_{3} + 113863\beta_{2} + 659893\beta _1 + 62737118 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
71.6033
−57.2380
−43.7048
−26.5652
57.9047
0 −9.00000 0 −91.9065 0 −1.91671 0 81.0000 0
1.2 0 −9.00000 0 −69.8269 0 147.923 0 81.0000 0
1.3 0 −9.00000 0 19.9765 0 −224.674 0 81.0000 0
1.4 0 −9.00000 0 67.0515 0 −67.8869 0 81.0000 0
1.5 0 −9.00000 0 68.7054 0 92.5541 0 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 912.6.a.v 5
4.b odd 2 1 228.6.a.d 5
12.b even 2 1 684.6.a.f 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
228.6.a.d 5 4.b odd 2 1
684.6.a.f 5 12.b even 2 1
912.6.a.v 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{5} + 6T_{5}^{4} - 11451T_{5}^{3} + 92232T_{5}^{2} + 32084460T_{5} - 590593248 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(912))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( (T + 9)^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + 6 T^{4} + \cdots - 590593248 \) Copy content Toggle raw display
$7$ \( T^{5} + 54 T^{4} + \cdots + 400244992 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 14781508675200 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots - 8001780630720 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots + 146751918996600 \) Copy content Toggle raw display
$19$ \( (T + 361)^{5} \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 14\!\cdots\!04 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 11\!\cdots\!92 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 10\!\cdots\!40 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 44\!\cdots\!84 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 27\!\cdots\!76 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 54\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 12\!\cdots\!88 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 18\!\cdots\!32 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 50\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 67\!\cdots\!80 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 96\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 91\!\cdots\!28 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 22\!\cdots\!88 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 62\!\cdots\!48 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 39\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 61\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 97\!\cdots\!00 \) Copy content Toggle raw display
show more
show less