[N,k,chi] = [912,6,Mod(1,912)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(912, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("912.1");
S:= CuspForms(chi, 6);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 , β 4 1,\beta_1,\beta_2,\beta_3,\beta_4 1 , β 1 , β 2 , β 3 , β 4 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 5 − 2 x 4 − 7184 x 3 − 76134 x 2 + 12883743 x + 275533272 x^{5} - 2x^{4} - 7184x^{3} - 76134x^{2} + 12883743x + 275533272 x 5 − 2 x 4 − 7 1 8 4 x 3 − 7 6 1 3 4 x 2 + 1 2 8 8 3 7 4 3 x + 2 7 5 5 3 3 2 7 2
x^5 - 2*x^4 - 7184*x^3 - 76134*x^2 + 12883743*x + 275533272
:
β 1 \beta_{1} β 1 = = =
( 31 ν 4 + 85 ν 3 − 29759 ν 2 − 3271437 ν − 242224776 ) / 2387520 ( 31\nu^{4} + 85\nu^{3} - 29759\nu^{2} - 3271437\nu - 242224776 ) / 2387520 ( 3 1 ν 4 + 8 5 ν 3 − 2 9 7 5 9 ν 2 − 3 2 7 1 4 3 7 ν − 2 4 2 2 2 4 7 7 6 ) / 2 3 8 7 5 2 0
(31*v^4 + 85*v^3 - 29759*v^2 - 3271437*v - 242224776) / 2387520
β 2 \beta_{2} β 2 = = =
( − 67 ν 4 + 4095 ν 3 + 312483 ν 2 − 8328551 ν − 414802968 ) / 795840 ( -67\nu^{4} + 4095\nu^{3} + 312483\nu^{2} - 8328551\nu - 414802968 ) / 795840 ( − 6 7 ν 4 + 4 0 9 5 ν 3 + 3 1 2 4 8 3 ν 2 − 8 3 2 8 5 5 1 ν − 4 1 4 8 0 2 9 6 8 ) / 7 9 5 8 4 0
(-67*v^4 + 4095*v^3 + 312483*v^2 - 8328551*v - 414802968) / 795840
β 3 \beta_{3} β 3 = = =
( − 17 ν 4 + 1237 ν 3 + 90769 ν 2 − 4258221 ν − 148185864 ) / 238752 ( -17\nu^{4} + 1237\nu^{3} + 90769\nu^{2} - 4258221\nu - 148185864 ) / 238752 ( − 1 7 ν 4 + 1 2 3 7 ν 3 + 9 0 7 6 9 ν 2 − 4 2 5 8 2 2 1 ν − 1 4 8 1 8 5 8 6 4 ) / 2 3 8 7 5 2
(-17*v^4 + 1237*v^3 + 90769*v^2 - 4258221*v - 148185864) / 238752
β 4 \beta_{4} β 4 = = =
( 127 ν 4 − 2219 ν 3 − 748319 ν 2 + 7774707 ν + 937268856 ) / 477504 ( 127\nu^{4} - 2219\nu^{3} - 748319\nu^{2} + 7774707\nu + 937268856 ) / 477504 ( 1 2 7 ν 4 − 2 2 1 9 ν 3 − 7 4 8 3 1 9 ν 2 + 7 7 7 4 7 0 7 ν + 9 3 7 2 6 8 8 5 6 ) / 4 7 7 5 0 4
(127*v^4 - 2219*v^3 - 748319*v^2 + 7774707*v + 937268856) / 477504
ν \nu ν = = =
( − β 3 + β 2 + β 1 + 2 ) / 6 ( -\beta_{3} + \beta_{2} + \beta _1 + 2 ) / 6 ( − β 3 + β 2 + β 1 + 2 ) / 6
(-b3 + b2 + b1 + 2) / 6
ν 2 \nu^{2} ν 2 = = =
( − 6 β 4 − 25 β 3 + 19 β 2 + 109 β 1 + 17222 ) / 6 ( -6\beta_{4} - 25\beta_{3} + 19\beta_{2} + 109\beta _1 + 17222 ) / 6 ( − 6 β 4 − 2 5 β 3 + 1 9 β 2 + 1 0 9 β 1 + 1 7 2 2 2 ) / 6
(-6*b4 - 25*b3 + 19*b2 + 109*b1 + 17222) / 6
ν 3 \nu^{3} ν 3 = = =
( 348 β 4 − 2149 β 3 + 3613 β 2 + 4513 β 1 + 324122 ) / 6 ( 348\beta_{4} - 2149\beta_{3} + 3613\beta_{2} + 4513\beta _1 + 324122 ) / 6 ( 3 4 8 β 4 − 2 1 4 9 β 3 + 3 6 1 3 β 2 + 4 5 1 3 β 1 + 3 2 4 1 2 2 ) / 6
(348*b4 - 2149*b3 + 3613*b2 + 4513*b1 + 324122) / 6
ν 4 \nu^{4} ν 4 = = =
( − 6714 β 4 − 123637 β 3 + 113863 β 2 + 659893 β 1 + 62737118 ) / 6 ( -6714\beta_{4} - 123637\beta_{3} + 113863\beta_{2} + 659893\beta _1 + 62737118 ) / 6 ( − 6 7 1 4 β 4 − 1 2 3 6 3 7 β 3 + 1 1 3 8 6 3 β 2 + 6 5 9 8 9 3 β 1 + 6 2 7 3 7 1 1 8 ) / 6
(-6714*b4 - 123637*b3 + 113863*b2 + 659893*b1 + 62737118) / 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
+ 1 +1 + 1
19 19 1 9
+ 1 +1 + 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 5 5 + 6 T 5 4 − 11451 T 5 3 + 92232 T 5 2 + 32084460 T 5 − 590593248 T_{5}^{5} + 6T_{5}^{4} - 11451T_{5}^{3} + 92232T_{5}^{2} + 32084460T_{5} - 590593248 T 5 5 + 6 T 5 4 − 1 1 4 5 1 T 5 3 + 9 2 2 3 2 T 5 2 + 3 2 0 8 4 4 6 0 T 5 − 5 9 0 5 9 3 2 4 8
T5^5 + 6*T5^4 - 11451*T5^3 + 92232*T5^2 + 32084460*T5 - 590593248
acting on S 6 n e w ( Γ 0 ( 912 ) ) S_{6}^{\mathrm{new}}(\Gamma_0(912)) S 6 n e w ( Γ 0 ( 9 1 2 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 5 T^{5} T 5
T^5
3 3 3
( T + 9 ) 5 (T + 9)^{5} ( T + 9 ) 5
(T + 9)^5
5 5 5
T 5 + 6 T 4 + ⋯ − 590593248 T^{5} + 6 T^{4} + \cdots - 590593248 T 5 + 6 T 4 + ⋯ − 5 9 0 5 9 3 2 4 8
T^5 + 6*T^4 - 11451*T^3 + 92232*T^2 + 32084460*T - 590593248
7 7 7
T 5 + 54 T 4 + ⋯ + 400244992 T^{5} + 54 T^{4} + \cdots + 400244992 T 5 + 5 4 T 4 + ⋯ + 4 0 0 2 4 4 9 9 2
T^5 + 54*T^4 - 41311*T^3 + 258188*T^2 + 209465664*T + 400244992
11 11 1 1
T 5 + ⋯ + 14781508675200 T^{5} + \cdots + 14781508675200 T 5 + ⋯ + 1 4 7 8 1 5 0 8 6 7 5 2 0 0
T^5 + 272*T^4 - 456267*T^3 - 127884750*T^2 + 51523941384*T + 14781508675200
13 13 1 3
T 5 + ⋯ − 8001780630720 T^{5} + \cdots - 8001780630720 T 5 + ⋯ − 8 0 0 1 7 8 0 6 3 0 7 2 0
T^5 - 440*T^4 - 1184688*T^3 + 654569104*T^2 + 53823883696*T - 8001780630720
17 17 1 7
T 5 + ⋯ + 146751918996600 T^{5} + \cdots + 146751918996600 T 5 + ⋯ + 1 4 6 7 5 1 9 1 8 9 9 6 6 0 0
T^5 - 1940*T^4 - 3998967*T^3 + 4571859282*T^2 + 5929740161676*T + 146751918996600
19 19 1 9
( T + 361 ) 5 (T + 361)^{5} ( T + 3 6 1 ) 5
(T + 361)^5
23 23 2 3
T 5 + ⋯ + 14 ⋯ 04 T^{5} + \cdots + 14\!\cdots\!04 T 5 + ⋯ + 1 4 ⋯ 0 4
T^5 + 3224*T^4 - 9123732*T^3 - 13438073760*T^2 - 1740679152192*T + 1464257968303104
29 29 2 9
T 5 + ⋯ − 11 ⋯ 92 T^{5} + \cdots - 11\!\cdots\!92 T 5 + ⋯ − 1 1 ⋯ 9 2
T^5 - 7524*T^4 - 1792776*T^3 + 71433389376*T^2 - 886867121520*T - 114853150441939392
31 31 3 1
T 5 + ⋯ + 10 ⋯ 40 T^{5} + \cdots + 10\!\cdots\!40 T 5 + ⋯ + 1 0 ⋯ 4 0
T^5 + 11774*T^4 - 69796500*T^3 - 944349249976*T^2 + 342377571201472*T + 10801274740763351040
37 37 3 7
T 5 + ⋯ − 44 ⋯ 84 T^{5} + \cdots - 44\!\cdots\!84 T 5 + ⋯ − 4 4 ⋯ 8 4
T^5 - 17760*T^4 - 4526284*T^3 + 801971053168*T^2 - 103461139302144*T - 4411083051958749184
41 41 4 1
T 5 + ⋯ − 27 ⋯ 76 T^{5} + \cdots - 27\!\cdots\!76 T 5 + ⋯ − 2 7 ⋯ 7 6
T^5 - 10736*T^4 - 325148484*T^3 + 3505857740928*T^2 + 25826786752504320*T - 278599082174386200576
43 43 4 3
T 5 + ⋯ + 54 ⋯ 16 T^{5} + \cdots + 54\!\cdots\!16 T 5 + ⋯ + 5 4 ⋯ 1 6
T^5 + 21914*T^4 - 125114871*T^3 - 2901377968288*T^2 - 5679566613141872*T + 5447316281248415616
47 47 4 7
T 5 + ⋯ − 12 ⋯ 88 T^{5} + \cdots - 12\!\cdots\!88 T 5 + ⋯ − 1 2 ⋯ 8 8
T^5 + 10190*T^4 - 733185867*T^3 - 6270406192644*T^2 + 64778030712115524*T - 120238395110579174688
53 53 5 3
T 5 + ⋯ + 18 ⋯ 32 T^{5} + \cdots + 18\!\cdots\!32 T 5 + ⋯ + 1 8 ⋯ 3 2
T^5 + 1676*T^4 - 1160739624*T^3 - 2986769170464*T^2 + 216304954600481424*T + 183360956993719376832
59 59 5 9
T 5 + ⋯ + 50 ⋯ 76 T^{5} + \cdots + 50\!\cdots\!76 T 5 + ⋯ + 5 0 ⋯ 7 6
T^5 + 54920*T^4 + 457680336*T^3 - 14416931071872*T^2 - 156618742952987136*T + 500272613123485925376
61 61 6 1
T 5 + ⋯ − 67 ⋯ 80 T^{5} + \cdots - 67\!\cdots\!80 T 5 + ⋯ − 6 7 ⋯ 8 0
T^5 - 39268*T^4 - 3190785911*T^3 + 116145379165906*T^2 + 2106757088503678412*T - 67384770247534812579080
67 67 6 7
T 5 + ⋯ + 96 ⋯ 00 T^{5} + \cdots + 96\!\cdots\!00 T 5 + ⋯ + 9 6 ⋯ 0 0
T^5 + 104168*T^4 + 3070229040*T^3 + 33204908345600*T^2 + 110776905804736000*T + 96108615511703040000
71 71 7 1
T 5 + ⋯ + 91 ⋯ 28 T^{5} + \cdots + 91\!\cdots\!28 T 5 + ⋯ + 9 1 ⋯ 2 8
T^5 + 50620*T^4 - 4857568464*T^3 - 212442799464000*T^2 + 4265945020510419456*T + 91844891364966825443328
73 73 7 3
T 5 + ⋯ − 22 ⋯ 88 T^{5} + \cdots - 22\!\cdots\!88 T 5 + ⋯ − 2 2 ⋯ 8 8
T^5 - 98616*T^4 + 34916753*T^3 + 136111602066322*T^2 + 453328859827985484*T - 22722716963023745348488
79 79 7 9
T 5 + ⋯ − 62 ⋯ 48 T^{5} + \cdots - 62\!\cdots\!48 T 5 + ⋯ − 6 2 ⋯ 4 8
T^5 + 115782*T^4 - 27956560*T^3 - 342639256513984*T^2 - 10378998916344717312*T - 62854902365242001051648
83 83 8 3
T 5 + ⋯ − 39 ⋯ 76 T^{5} + \cdots - 39\!\cdots\!76 T 5 + ⋯ − 3 9 ⋯ 7 6
T^5 + 143266*T^4 - 482997696*T^3 - 836043485540160*T^2 - 37104023994320390400*T - 399072256563285466430976
89 89 8 9
T 5 + ⋯ + 61 ⋯ 40 T^{5} + \cdots + 61\!\cdots\!40 T 5 + ⋯ + 6 1 ⋯ 4 0
T^5 - 88112*T^4 - 7603584552*T^3 + 716916982772256*T^2 - 13317367485953943792*T + 61435976491554054675840
97 97 9 7
T 5 + ⋯ − 97 ⋯ 00 T^{5} + \cdots - 97\!\cdots\!00 T 5 + ⋯ − 9 7 ⋯ 0 0
T^5 - 186490*T^4 - 9528870488*T^3 + 2742064548801328*T^2 + 3778840250124367184*T - 9700341309822144092122400
show more
show less