Properties

Label 2-92-1.1-c5-0-0
Degree $2$
Conductor $92$
Sign $1$
Analytic cond. $14.7553$
Root an. cond. $3.84126$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17.0·3-s − 74.6·5-s − 68.6·7-s + 46.5·9-s − 159.·11-s + 193.·13-s + 1.27e3·15-s + 190.·17-s + 1.16e3·19-s + 1.16e3·21-s − 529·23-s + 2.44e3·25-s + 3.34e3·27-s + 3.72e3·29-s + 1.34e3·31-s + 2.70e3·33-s + 5.12e3·35-s − 1.16e3·37-s − 3.30e3·39-s − 1.49e4·41-s + 1.42e4·43-s − 3.47e3·45-s + 1.00e4·47-s − 1.20e4·49-s − 3.24e3·51-s − 2.57e4·53-s + 1.18e4·55-s + ⋯
L(s)  = 1  − 1.09·3-s − 1.33·5-s − 0.529·7-s + 0.191·9-s − 0.396·11-s + 0.318·13-s + 1.45·15-s + 0.160·17-s + 0.737·19-s + 0.578·21-s − 0.208·23-s + 0.783·25-s + 0.882·27-s + 0.822·29-s + 0.251·31-s + 0.432·33-s + 0.707·35-s − 0.140·37-s − 0.347·39-s − 1.38·41-s + 1.17·43-s − 0.255·45-s + 0.664·47-s − 0.719·49-s − 0.174·51-s − 1.26·53-s + 0.529·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(92\)    =    \(2^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(14.7553\)
Root analytic conductor: \(3.84126\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 92,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5831655586\)
\(L(\frac12)\) \(\approx\) \(0.5831655586\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + 529T \)
good3 \( 1 + 17.0T + 243T^{2} \)
5 \( 1 + 74.6T + 3.12e3T^{2} \)
7 \( 1 + 68.6T + 1.68e4T^{2} \)
11 \( 1 + 159.T + 1.61e5T^{2} \)
13 \( 1 - 193.T + 3.71e5T^{2} \)
17 \( 1 - 190.T + 1.41e6T^{2} \)
19 \( 1 - 1.16e3T + 2.47e6T^{2} \)
29 \( 1 - 3.72e3T + 2.05e7T^{2} \)
31 \( 1 - 1.34e3T + 2.86e7T^{2} \)
37 \( 1 + 1.16e3T + 6.93e7T^{2} \)
41 \( 1 + 1.49e4T + 1.15e8T^{2} \)
43 \( 1 - 1.42e4T + 1.47e8T^{2} \)
47 \( 1 - 1.00e4T + 2.29e8T^{2} \)
53 \( 1 + 2.57e4T + 4.18e8T^{2} \)
59 \( 1 - 967.T + 7.14e8T^{2} \)
61 \( 1 - 2.06e4T + 8.44e8T^{2} \)
67 \( 1 - 1.60e4T + 1.35e9T^{2} \)
71 \( 1 - 3.88e3T + 1.80e9T^{2} \)
73 \( 1 + 4.68e4T + 2.07e9T^{2} \)
79 \( 1 - 2.01e4T + 3.07e9T^{2} \)
83 \( 1 + 3.38e4T + 3.93e9T^{2} \)
89 \( 1 + 5.40e4T + 5.58e9T^{2} \)
97 \( 1 - 9.72e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.73490011167862601418878487140, −11.88677630204669728716689607293, −11.20461227232081993215885560704, −10.10682360348157034319629008408, −8.493229421199725669847406581114, −7.32093670214553163835965337794, −6.08762656396737846101137024574, −4.76995473407866603360595538840, −3.31287619356490240476198455428, −0.57517370250827340953864886244, 0.57517370250827340953864886244, 3.31287619356490240476198455428, 4.76995473407866603360595538840, 6.08762656396737846101137024574, 7.32093670214553163835965337794, 8.493229421199725669847406581114, 10.10682360348157034319629008408, 11.20461227232081993215885560704, 11.88677630204669728716689607293, 12.73490011167862601418878487140

Graph of the $Z$-function along the critical line