Properties

Label 92.6.a.b
Level $92$
Weight $6$
Character orbit 92.a
Self dual yes
Analytic conductor $14.755$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [92,6,Mod(1,92)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("92.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 92.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.7553114228\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 544x^{2} + 2488x + 27000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 7) q^{3} + ( - \beta_{2} + 2 \beta_1 + 3) q^{5} + ( - \beta_{3} - \beta_{2} + \beta_1 + 62) q^{7} + (2 \beta_{3} + \beta_{2} + 9 \beta_1 + 79) q^{9} + (\beta_{3} + 5 \beta_{2} + 15 \beta_1 - 24) q^{11}+ \cdots + ( - 228 \beta_{3} - 768 \beta_{2} + \cdots + 72240) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 29 q^{3} + 14 q^{5} + 248 q^{7} + 327 q^{9} - 80 q^{11} + 1331 q^{13} + 2046 q^{15} + 1690 q^{17} + 2752 q^{19} + 3100 q^{21} - 2116 q^{23} + 7192 q^{25} + 4463 q^{27} + 9281 q^{29} + 8105 q^{31}+ \cdots + 290370 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 544x^{2} + 2488x + 27000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} - 9\nu^{2} + 839\nu - 675 ) / 57 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 33\nu^{2} - 277\nu - 7443 ) / 57 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{3} + \beta_{2} - 5\beta _1 + 273 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -9\beta_{3} - 33\beta_{2} + 442\beta _1 - 1566 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−24.0160
−5.22987
11.4167
18.8292
0 −17.0160 0 −74.6466 0 −68.6678 0 46.5448 0
1.2 0 1.77013 0 80.6619 0 236.730 0 −239.867 0
1.3 0 18.4167 0 −57.5774 0 74.4992 0 96.1744 0
1.4 0 25.8292 0 65.5621 0 5.43870 0 424.147 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 92.6.a.b 4
3.b odd 2 1 828.6.a.b 4
4.b odd 2 1 368.6.a.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
92.6.a.b 4 1.a even 1 1 trivial
368.6.a.f 4 4.b odd 2 1
828.6.a.b 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 29T_{3}^{3} - 229T_{3}^{2} + 8585T_{3} - 14328 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(92))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 29 T^{3} + \cdots - 14328 \) Copy content Toggle raw display
$5$ \( T^{4} - 14 T^{3} + \cdots + 22729152 \) Copy content Toggle raw display
$7$ \( T^{4} - 248 T^{3} + \cdots - 6586464 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 11353688352 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 30034956190 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 285195988080 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 1601312350416 \) Copy content Toggle raw display
$23$ \( (T + 529)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 56426919820074 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 348744399621840 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 188989808397888 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 33\!\cdots\!78 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 38\!\cdots\!72 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 25\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 19\!\cdots\!88 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 19\!\cdots\!40 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 55\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 27\!\cdots\!38 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 78\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 44\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 50\!\cdots\!80 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 41\!\cdots\!60 \) Copy content Toggle raw display
show more
show less