Properties

Label 8-92e4-1.1-c5e4-0-0
Degree $8$
Conductor $71639296$
Sign $1$
Analytic cond. $47401.6$
Root an. cond. $3.84126$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 29·3-s + 14·5-s + 248·7-s + 98·9-s − 80·11-s + 1.33e3·13-s + 406·15-s + 1.69e3·17-s + 2.75e3·19-s + 7.19e3·21-s − 2.11e3·23-s − 2.55e3·25-s − 6.14e3·27-s + 9.28e3·29-s + 8.10e3·31-s − 2.32e3·33-s + 3.47e3·35-s + 9.83e3·37-s + 3.85e4·39-s − 1.16e4·41-s + 2.23e4·43-s + 1.37e3·45-s + 2.01e3·47-s − 3.30e3·49-s + 4.90e4·51-s − 5.36e4·53-s − 1.12e3·55-s + ⋯
L(s)  = 1  + 1.86·3-s + 0.250·5-s + 1.91·7-s + 0.403·9-s − 0.199·11-s + 2.18·13-s + 0.465·15-s + 1.41·17-s + 1.74·19-s + 3.55·21-s − 0.834·23-s − 0.817·25-s − 1.62·27-s + 2.04·29-s + 1.51·31-s − 0.370·33-s + 0.479·35-s + 1.18·37-s + 4.06·39-s − 1.08·41-s + 1.84·43-s + 0.101·45-s + 0.132·47-s − 0.196·49-s + 2.63·51-s − 2.62·53-s − 0.0499·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 71639296 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71639296 ^{s/2} \, \Gamma_{\C}(s+5/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(71639296\)    =    \(2^{8} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(47401.6\)
Root analytic conductor: \(3.84126\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 71639296,\ (\ :5/2, 5/2, 5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(15.40150848\)
\(L(\frac12)\) \(\approx\) \(15.40150848\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
23$C_1$ \( ( 1 + p^{2} T )^{4} \)
good3$C_2 \wr S_4$ \( 1 - 29 T + 743 T^{2} - 12556 T^{3} + 25408 p^{2} T^{4} - 12556 p^{5} T^{5} + 743 p^{10} T^{6} - 29 p^{15} T^{7} + p^{20} T^{8} \)
5$C_2 \wr S_4$ \( 1 - 14 T + 2752 T^{2} - 60466 T^{3} + 20397902 T^{4} - 60466 p^{5} T^{5} + 2752 p^{10} T^{6} - 14 p^{15} T^{7} + p^{20} T^{8} \)
7$C_2 \wr S_4$ \( 1 - 248 T + 64812 T^{2} - 11273056 T^{3} + 1607053606 T^{4} - 11273056 p^{5} T^{5} + 64812 p^{10} T^{6} - 248 p^{15} T^{7} + p^{20} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 80 T + 290660 T^{2} + 55744824 T^{3} + 53101006470 T^{4} + 55744824 p^{5} T^{5} + 290660 p^{10} T^{6} + 80 p^{15} T^{7} + p^{20} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 1331 T + 1577773 T^{2} - 1302902086 T^{3} + 865880201090 T^{4} - 1302902086 p^{5} T^{5} + 1577773 p^{10} T^{6} - 1331 p^{15} T^{7} + p^{20} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 1690 T + 4961508 T^{2} - 5513412534 T^{3} + 9772079939734 T^{4} - 5513412534 p^{5} T^{5} + 4961508 p^{10} T^{6} - 1690 p^{15} T^{7} + p^{20} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 2752 T + 8128308 T^{2} - 17616020096 T^{3} + 29592170455798 T^{4} - 17616020096 p^{5} T^{5} + 8128308 p^{10} T^{6} - 2752 p^{15} T^{7} + p^{20} T^{8} \)
29$C_2 \wr S_4$ \( 1 - 9281 T + 78449853 T^{2} - 495820359354 T^{3} + 2433205701041866 T^{4} - 495820359354 p^{5} T^{5} + 78449853 p^{10} T^{6} - 9281 p^{15} T^{7} + p^{20} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 8105 T + 66178623 T^{2} - 359444338576 T^{3} + 58105632519184 p T^{4} - 359444338576 p^{5} T^{5} + 66178623 p^{10} T^{6} - 8105 p^{15} T^{7} + p^{20} T^{8} \)
37$C_2 \wr S_4$ \( 1 - 9834 T + 230498704 T^{2} - 1923723878582 T^{3} + 22539205501025646 T^{4} - 1923723878582 p^{5} T^{5} + 230498704 p^{10} T^{6} - 9834 p^{15} T^{7} + p^{20} T^{8} \)
41$C_2 \wr S_4$ \( 1 + 11653 T + 361294293 T^{2} + 3478400054238 T^{3} + 60189745348156162 T^{4} + 3478400054238 p^{5} T^{5} + 361294293 p^{10} T^{6} + 11653 p^{15} T^{7} + p^{20} T^{8} \)
43$C_2 \wr S_4$ \( 1 - 22358 T + 577397244 T^{2} - 7174666378102 T^{3} + 113874198877296886 T^{4} - 7174666378102 p^{5} T^{5} + 577397244 p^{10} T^{6} - 22358 p^{15} T^{7} + p^{20} T^{8} \)
47$C_2 \wr S_4$ \( 1 - 2013 T + 399140647 T^{2} - 808467096888 T^{3} + 116385444993555632 T^{4} - 808467096888 p^{5} T^{5} + 399140647 p^{10} T^{6} - 2013 p^{15} T^{7} + p^{20} T^{8} \)
53$C_2 \wr S_4$ \( 1 + 53614 T + 2439191752 T^{2} + 68424875378714 T^{3} + 1687820261377132670 T^{4} + 68424875378714 p^{5} T^{5} + 2439191752 p^{10} T^{6} + 53614 p^{15} T^{7} + p^{20} T^{8} \)
59$C_2 \wr S_4$ \( 1 + 19660 T + 1378013804 T^{2} + 10463291989260 T^{3} + 980141794100533590 T^{4} + 10463291989260 p^{5} T^{5} + 1378013804 p^{10} T^{6} + 19660 p^{15} T^{7} + p^{20} T^{8} \)
61$C_2 \wr S_4$ \( 1 + 43446 T + 3417849392 T^{2} + 91494697548354 T^{3} + 4147050535952226894 T^{4} + 91494697548354 p^{5} T^{5} + 3417849392 p^{10} T^{6} + 43446 p^{15} T^{7} + p^{20} T^{8} \)
67$C_2 \wr S_4$ \( 1 + 56544 T + 2794409764 T^{2} + 132990518207032 T^{3} + 5816913041778865638 T^{4} + 132990518207032 p^{5} T^{5} + 2794409764 p^{10} T^{6} + 56544 p^{15} T^{7} + p^{20} T^{8} \)
71$C_2 \wr S_4$ \( 1 - 15921 T + 6612270215 T^{2} - 82213881208992 T^{3} + 17344052626781522544 T^{4} - 82213881208992 p^{5} T^{5} + 6612270215 p^{10} T^{6} - 15921 p^{15} T^{7} + p^{20} T^{8} \)
73$C_2 \wr S_4$ \( 1 + 179843 T + 19592274761 T^{2} + 1415358504440970 T^{3} + 75419679497796599486 T^{4} + 1415358504440970 p^{5} T^{5} + 19592274761 p^{10} T^{6} + 179843 p^{15} T^{7} + p^{20} T^{8} \)
79$C_2 \wr S_4$ \( 1 - 116422 T + 14888621792 T^{2} - 1048496876201430 T^{3} + 71901244815438356894 T^{4} - 1048496876201430 p^{5} T^{5} + 14888621792 p^{10} T^{6} - 116422 p^{15} T^{7} + p^{20} T^{8} \)
83$C_2 \wr S_4$ \( 1 + 9838 T + 10143357484 T^{2} + 85085944797206 T^{3} + 53318700468816579974 T^{4} + 85085944797206 p^{5} T^{5} + 10143357484 p^{10} T^{6} + 9838 p^{15} T^{7} + p^{20} T^{8} \)
89$C_2 \wr S_4$ \( 1 + 1674 p T + 26163573548 T^{2} + 27144354291534 p T^{3} + \)\(22\!\cdots\!22\)\( T^{4} + 27144354291534 p^{6} T^{5} + 26163573548 p^{10} T^{6} + 1674 p^{16} T^{7} + p^{20} T^{8} \)
97$C_2 \wr S_4$ \( 1 - 72030 T + 28610306268 T^{2} - 1536383832651522 T^{3} + \)\(34\!\cdots\!14\)\( T^{4} - 1536383832651522 p^{5} T^{5} + 28610306268 p^{10} T^{6} - 72030 p^{15} T^{7} + p^{20} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.455688567600143406966295226235, −8.919204969976453099477469916975, −8.539285334484289554159995492114, −8.493229421199725669847406581114, −8.333563817592058875759935650141, −7.967037068415288904564592734616, −7.67978816795963632942594731031, −7.61531505706806834743466619665, −7.32093670214553163835965337794, −6.27902560625897239229379272281, −6.26992427684431227669286130683, −6.08762656396737846101137024574, −5.61826898647124550696559629666, −5.21339087819810365207902315072, −4.76995473407866603360595538840, −4.41708796030726615985391047823, −4.17222859905600942509554604027, −3.31287619356490240476198455428, −3.31223888576756110844356334836, −2.79816355862108504622378006332, −2.75515942074681724524511972563, −1.76128974485690617398339249911, −1.41912085942650671140141303815, −1.32484972323579025818879848220, −0.57517370250827340953864886244, 0.57517370250827340953864886244, 1.32484972323579025818879848220, 1.41912085942650671140141303815, 1.76128974485690617398339249911, 2.75515942074681724524511972563, 2.79816355862108504622378006332, 3.31223888576756110844356334836, 3.31287619356490240476198455428, 4.17222859905600942509554604027, 4.41708796030726615985391047823, 4.76995473407866603360595538840, 5.21339087819810365207902315072, 5.61826898647124550696559629666, 6.08762656396737846101137024574, 6.26992427684431227669286130683, 6.27902560625897239229379272281, 7.32093670214553163835965337794, 7.61531505706806834743466619665, 7.67978816795963632942594731031, 7.967037068415288904564592734616, 8.333563817592058875759935650141, 8.493229421199725669847406581114, 8.539285334484289554159995492114, 8.919204969976453099477469916975, 9.455688567600143406966295226235

Graph of the $Z$-function along the critical line