Properties

Label 92.6.a.b.1.3
Level $92$
Weight $6$
Character 92.1
Self dual yes
Analytic conductor $14.755$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [92,6,Mod(1,92)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("92.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 92 = 2^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 92.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.7553114228\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 544x^{2} + 2488x + 27000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(11.4167\) of defining polynomial
Character \(\chi\) \(=\) 92.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+18.4167 q^{3} -57.5774 q^{5} +74.4992 q^{7} +96.1744 q^{9} +479.811 q^{11} +1128.85 q^{13} -1060.39 q^{15} +1508.32 q^{17} -785.781 q^{19} +1372.03 q^{21} -529.000 q^{23} +190.158 q^{25} -2704.04 q^{27} -2247.76 q^{29} +9913.15 q^{31} +8836.53 q^{33} -4289.47 q^{35} +12679.2 q^{37} +20789.7 q^{39} +4947.86 q^{41} -10913.3 q^{43} -5537.47 q^{45} -20307.4 q^{47} -11256.9 q^{49} +27778.3 q^{51} -3219.45 q^{53} -27626.3 q^{55} -14471.5 q^{57} -23969.2 q^{59} -18845.5 q^{61} +7164.91 q^{63} -64996.5 q^{65} +39610.7 q^{67} -9742.43 q^{69} +2132.25 q^{71} -29857.3 q^{73} +3502.08 q^{75} +35745.5 q^{77} +82839.7 q^{79} -73169.9 q^{81} -70505.6 q^{83} -86845.1 q^{85} -41396.2 q^{87} -5277.95 q^{89} +84098.7 q^{91} +182567. q^{93} +45243.2 q^{95} -130.946 q^{97} +46145.5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 29 q^{3} + 14 q^{5} + 248 q^{7} + 327 q^{9} - 80 q^{11} + 1331 q^{13} + 2046 q^{15} + 1690 q^{17} + 2752 q^{19} + 3100 q^{21} - 2116 q^{23} + 7192 q^{25} + 4463 q^{27} + 9281 q^{29} + 8105 q^{31}+ \cdots + 290370 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 18.4167 1.18143 0.590716 0.806880i \(-0.298846\pi\)
0.590716 + 0.806880i \(0.298846\pi\)
\(4\) 0 0
\(5\) −57.5774 −1.02998 −0.514988 0.857197i \(-0.672204\pi\)
−0.514988 + 0.857197i \(0.672204\pi\)
\(6\) 0 0
\(7\) 74.4992 0.574654 0.287327 0.957833i \(-0.407233\pi\)
0.287327 + 0.957833i \(0.407233\pi\)
\(8\) 0 0
\(9\) 96.1744 0.395779
\(10\) 0 0
\(11\) 479.811 1.19561 0.597803 0.801643i \(-0.296040\pi\)
0.597803 + 0.801643i \(0.296040\pi\)
\(12\) 0 0
\(13\) 1128.85 1.85259 0.926295 0.376799i \(-0.122975\pi\)
0.926295 + 0.376799i \(0.122975\pi\)
\(14\) 0 0
\(15\) −1060.39 −1.21685
\(16\) 0 0
\(17\) 1508.32 1.26582 0.632909 0.774226i \(-0.281861\pi\)
0.632909 + 0.774226i \(0.281861\pi\)
\(18\) 0 0
\(19\) −785.781 −0.499364 −0.249682 0.968328i \(-0.580326\pi\)
−0.249682 + 0.968328i \(0.580326\pi\)
\(20\) 0 0
\(21\) 1372.03 0.678914
\(22\) 0 0
\(23\) −529.000 −0.208514
\(24\) 0 0
\(25\) 190.158 0.0608506
\(26\) 0 0
\(27\) −2704.04 −0.713845
\(28\) 0 0
\(29\) −2247.76 −0.496311 −0.248156 0.968720i \(-0.579824\pi\)
−0.248156 + 0.968720i \(0.579824\pi\)
\(30\) 0 0
\(31\) 9913.15 1.85271 0.926355 0.376651i \(-0.122924\pi\)
0.926355 + 0.376651i \(0.122924\pi\)
\(32\) 0 0
\(33\) 8836.53 1.41253
\(34\) 0 0
\(35\) −4289.47 −0.591880
\(36\) 0 0
\(37\) 12679.2 1.52260 0.761302 0.648397i \(-0.224560\pi\)
0.761302 + 0.648397i \(0.224560\pi\)
\(38\) 0 0
\(39\) 20789.7 2.18871
\(40\) 0 0
\(41\) 4947.86 0.459682 0.229841 0.973228i \(-0.426179\pi\)
0.229841 + 0.973228i \(0.426179\pi\)
\(42\) 0 0
\(43\) −10913.3 −0.900085 −0.450043 0.893007i \(-0.648591\pi\)
−0.450043 + 0.893007i \(0.648591\pi\)
\(44\) 0 0
\(45\) −5537.47 −0.407643
\(46\) 0 0
\(47\) −20307.4 −1.34094 −0.670469 0.741938i \(-0.733907\pi\)
−0.670469 + 0.741938i \(0.733907\pi\)
\(48\) 0 0
\(49\) −11256.9 −0.669773
\(50\) 0 0
\(51\) 27778.3 1.49548
\(52\) 0 0
\(53\) −3219.45 −0.157432 −0.0787158 0.996897i \(-0.525082\pi\)
−0.0787158 + 0.996897i \(0.525082\pi\)
\(54\) 0 0
\(55\) −27626.3 −1.23145
\(56\) 0 0
\(57\) −14471.5 −0.589964
\(58\) 0 0
\(59\) −23969.2 −0.896443 −0.448222 0.893923i \(-0.647942\pi\)
−0.448222 + 0.893923i \(0.647942\pi\)
\(60\) 0 0
\(61\) −18845.5 −0.648459 −0.324229 0.945979i \(-0.605105\pi\)
−0.324229 + 0.945979i \(0.605105\pi\)
\(62\) 0 0
\(63\) 7164.91 0.227436
\(64\) 0 0
\(65\) −64996.5 −1.90812
\(66\) 0 0
\(67\) 39610.7 1.07802 0.539008 0.842300i \(-0.318799\pi\)
0.539008 + 0.842300i \(0.318799\pi\)
\(68\) 0 0
\(69\) −9742.43 −0.246345
\(70\) 0 0
\(71\) 2132.25 0.0501987 0.0250993 0.999685i \(-0.492010\pi\)
0.0250993 + 0.999685i \(0.492010\pi\)
\(72\) 0 0
\(73\) −29857.3 −0.655758 −0.327879 0.944720i \(-0.606334\pi\)
−0.327879 + 0.944720i \(0.606334\pi\)
\(74\) 0 0
\(75\) 3502.08 0.0718907
\(76\) 0 0
\(77\) 35745.5 0.687060
\(78\) 0 0
\(79\) 82839.7 1.49338 0.746691 0.665171i \(-0.231641\pi\)
0.746691 + 0.665171i \(0.231641\pi\)
\(80\) 0 0
\(81\) −73169.9 −1.23914
\(82\) 0 0
\(83\) −70505.6 −1.12338 −0.561692 0.827346i \(-0.689850\pi\)
−0.561692 + 0.827346i \(0.689850\pi\)
\(84\) 0 0
\(85\) −86845.1 −1.30376
\(86\) 0 0
\(87\) −41396.2 −0.586358
\(88\) 0 0
\(89\) −5277.95 −0.0706301 −0.0353151 0.999376i \(-0.511243\pi\)
−0.0353151 + 0.999376i \(0.511243\pi\)
\(90\) 0 0
\(91\) 84098.7 1.06460
\(92\) 0 0
\(93\) 182567. 2.18885
\(94\) 0 0
\(95\) 45243.2 0.514333
\(96\) 0 0
\(97\) −130.946 −0.00141306 −0.000706531 1.00000i \(-0.500225\pi\)
−0.000706531 1.00000i \(0.500225\pi\)
\(98\) 0 0
\(99\) 46145.5 0.473197
\(100\) 0 0
\(101\) 6833.94 0.0666604 0.0333302 0.999444i \(-0.489389\pi\)
0.0333302 + 0.999444i \(0.489389\pi\)
\(102\) 0 0
\(103\) −50741.8 −0.471274 −0.235637 0.971841i \(-0.575718\pi\)
−0.235637 + 0.971841i \(0.575718\pi\)
\(104\) 0 0
\(105\) −78997.8 −0.699265
\(106\) 0 0
\(107\) 77381.9 0.653401 0.326701 0.945128i \(-0.394063\pi\)
0.326701 + 0.945128i \(0.394063\pi\)
\(108\) 0 0
\(109\) −212663. −1.71445 −0.857225 0.514942i \(-0.827813\pi\)
−0.857225 + 0.514942i \(0.827813\pi\)
\(110\) 0 0
\(111\) 233509. 1.79885
\(112\) 0 0
\(113\) −133453. −0.983177 −0.491589 0.870827i \(-0.663584\pi\)
−0.491589 + 0.870827i \(0.663584\pi\)
\(114\) 0 0
\(115\) 30458.4 0.214765
\(116\) 0 0
\(117\) 108567. 0.733217
\(118\) 0 0
\(119\) 112369. 0.727407
\(120\) 0 0
\(121\) 69167.5 0.429476
\(122\) 0 0
\(123\) 91123.2 0.543083
\(124\) 0 0
\(125\) 168981. 0.967301
\(126\) 0 0
\(127\) 10618.2 0.0584171 0.0292086 0.999573i \(-0.490701\pi\)
0.0292086 + 0.999573i \(0.490701\pi\)
\(128\) 0 0
\(129\) −200986. −1.06339
\(130\) 0 0
\(131\) −240217. −1.22300 −0.611498 0.791246i \(-0.709433\pi\)
−0.611498 + 0.791246i \(0.709433\pi\)
\(132\) 0 0
\(133\) −58540.0 −0.286962
\(134\) 0 0
\(135\) 155692. 0.735243
\(136\) 0 0
\(137\) 14162.8 0.0644684 0.0322342 0.999480i \(-0.489738\pi\)
0.0322342 + 0.999480i \(0.489738\pi\)
\(138\) 0 0
\(139\) 214580. 0.942005 0.471002 0.882132i \(-0.343892\pi\)
0.471002 + 0.882132i \(0.343892\pi\)
\(140\) 0 0
\(141\) −373994. −1.58423
\(142\) 0 0
\(143\) 541636. 2.21497
\(144\) 0 0
\(145\) 129420. 0.511189
\(146\) 0 0
\(147\) −207314. −0.791290
\(148\) 0 0
\(149\) 439806. 1.62291 0.811457 0.584412i \(-0.198675\pi\)
0.811457 + 0.584412i \(0.198675\pi\)
\(150\) 0 0
\(151\) 381239. 1.36068 0.680338 0.732898i \(-0.261833\pi\)
0.680338 + 0.732898i \(0.261833\pi\)
\(152\) 0 0
\(153\) 145062. 0.500985
\(154\) 0 0
\(155\) −570774. −1.90825
\(156\) 0 0
\(157\) 208496. 0.675071 0.337535 0.941313i \(-0.390407\pi\)
0.337535 + 0.941313i \(0.390407\pi\)
\(158\) 0 0
\(159\) −59291.6 −0.185995
\(160\) 0 0
\(161\) −39410.1 −0.119824
\(162\) 0 0
\(163\) −424768. −1.25223 −0.626113 0.779732i \(-0.715355\pi\)
−0.626113 + 0.779732i \(0.715355\pi\)
\(164\) 0 0
\(165\) −508784. −1.45487
\(166\) 0 0
\(167\) −570020. −1.58161 −0.790805 0.612069i \(-0.790338\pi\)
−0.790805 + 0.612069i \(0.790338\pi\)
\(168\) 0 0
\(169\) 903018. 2.43209
\(170\) 0 0
\(171\) −75572.0 −0.197638
\(172\) 0 0
\(173\) −694964. −1.76542 −0.882708 0.469922i \(-0.844282\pi\)
−0.882708 + 0.469922i \(0.844282\pi\)
\(174\) 0 0
\(175\) 14166.6 0.0349680
\(176\) 0 0
\(177\) −441432. −1.05909
\(178\) 0 0
\(179\) −215546. −0.502815 −0.251407 0.967881i \(-0.580893\pi\)
−0.251407 + 0.967881i \(0.580893\pi\)
\(180\) 0 0
\(181\) 278115. 0.630998 0.315499 0.948926i \(-0.397828\pi\)
0.315499 + 0.948926i \(0.397828\pi\)
\(182\) 0 0
\(183\) −347071. −0.766109
\(184\) 0 0
\(185\) −730035. −1.56825
\(186\) 0 0
\(187\) 723708. 1.51342
\(188\) 0 0
\(189\) −201449. −0.410214
\(190\) 0 0
\(191\) 522817. 1.03697 0.518485 0.855087i \(-0.326496\pi\)
0.518485 + 0.855087i \(0.326496\pi\)
\(192\) 0 0
\(193\) −534054. −1.03203 −0.516014 0.856580i \(-0.672585\pi\)
−0.516014 + 0.856580i \(0.672585\pi\)
\(194\) 0 0
\(195\) −1.19702e6 −2.25432
\(196\) 0 0
\(197\) −204755. −0.375897 −0.187949 0.982179i \(-0.560184\pi\)
−0.187949 + 0.982179i \(0.560184\pi\)
\(198\) 0 0
\(199\) −260531. −0.466366 −0.233183 0.972433i \(-0.574914\pi\)
−0.233183 + 0.972433i \(0.574914\pi\)
\(200\) 0 0
\(201\) 729498. 1.27360
\(202\) 0 0
\(203\) −167456. −0.285207
\(204\) 0 0
\(205\) −284885. −0.473462
\(206\) 0 0
\(207\) −50876.3 −0.0825257
\(208\) 0 0
\(209\) −377026. −0.597043
\(210\) 0 0
\(211\) 173321. 0.268006 0.134003 0.990981i \(-0.457217\pi\)
0.134003 + 0.990981i \(0.457217\pi\)
\(212\) 0 0
\(213\) 39269.0 0.0593063
\(214\) 0 0
\(215\) 628358. 0.927066
\(216\) 0 0
\(217\) 738522. 1.06467
\(218\) 0 0
\(219\) −549873. −0.774733
\(220\) 0 0
\(221\) 1.70267e6 2.34504
\(222\) 0 0
\(223\) 489602. 0.659297 0.329649 0.944104i \(-0.393070\pi\)
0.329649 + 0.944104i \(0.393070\pi\)
\(224\) 0 0
\(225\) 18288.3 0.0240834
\(226\) 0 0
\(227\) 913101. 1.17613 0.588064 0.808815i \(-0.299890\pi\)
0.588064 + 0.808815i \(0.299890\pi\)
\(228\) 0 0
\(229\) 775624. 0.977378 0.488689 0.872458i \(-0.337475\pi\)
0.488689 + 0.872458i \(0.337475\pi\)
\(230\) 0 0
\(231\) 658314. 0.811715
\(232\) 0 0
\(233\) −1.21804e6 −1.46984 −0.734921 0.678152i \(-0.762781\pi\)
−0.734921 + 0.678152i \(0.762781\pi\)
\(234\) 0 0
\(235\) 1.16924e6 1.38113
\(236\) 0 0
\(237\) 1.52563e6 1.76433
\(238\) 0 0
\(239\) −1.15864e6 −1.31207 −0.656033 0.754732i \(-0.727767\pi\)
−0.656033 + 0.754732i \(0.727767\pi\)
\(240\) 0 0
\(241\) −318710. −0.353471 −0.176735 0.984258i \(-0.556554\pi\)
−0.176735 + 0.984258i \(0.556554\pi\)
\(242\) 0 0
\(243\) −690464. −0.750111
\(244\) 0 0
\(245\) 648141. 0.689850
\(246\) 0 0
\(247\) −887031. −0.925117
\(248\) 0 0
\(249\) −1.29848e6 −1.32720
\(250\) 0 0
\(251\) 233096. 0.233535 0.116767 0.993159i \(-0.462747\pi\)
0.116767 + 0.993159i \(0.462747\pi\)
\(252\) 0 0
\(253\) −253820. −0.249301
\(254\) 0 0
\(255\) −1.59940e6 −1.54030
\(256\) 0 0
\(257\) 1.54900e6 1.46292 0.731458 0.681886i \(-0.238840\pi\)
0.731458 + 0.681886i \(0.238840\pi\)
\(258\) 0 0
\(259\) 944589. 0.874971
\(260\) 0 0
\(261\) −216177. −0.196430
\(262\) 0 0
\(263\) −1.04023e6 −0.927340 −0.463670 0.886008i \(-0.653468\pi\)
−0.463670 + 0.886008i \(0.653468\pi\)
\(264\) 0 0
\(265\) 185368. 0.162151
\(266\) 0 0
\(267\) −97202.3 −0.0834446
\(268\) 0 0
\(269\) −1.29876e6 −1.09433 −0.547166 0.837024i \(-0.684293\pi\)
−0.547166 + 0.837024i \(0.684293\pi\)
\(270\) 0 0
\(271\) 1.46692e6 1.21334 0.606672 0.794952i \(-0.292504\pi\)
0.606672 + 0.794952i \(0.292504\pi\)
\(272\) 0 0
\(273\) 1.54882e6 1.25775
\(274\) 0 0
\(275\) 91239.9 0.0727534
\(276\) 0 0
\(277\) 1.61836e6 1.26729 0.633646 0.773623i \(-0.281557\pi\)
0.633646 + 0.773623i \(0.281557\pi\)
\(278\) 0 0
\(279\) 953391. 0.733265
\(280\) 0 0
\(281\) −1.91098e6 −1.44374 −0.721871 0.692027i \(-0.756718\pi\)
−0.721871 + 0.692027i \(0.756718\pi\)
\(282\) 0 0
\(283\) 762121. 0.565663 0.282831 0.959170i \(-0.408726\pi\)
0.282831 + 0.959170i \(0.408726\pi\)
\(284\) 0 0
\(285\) 833230. 0.607649
\(286\) 0 0
\(287\) 368612. 0.264158
\(288\) 0 0
\(289\) 855172. 0.602294
\(290\) 0 0
\(291\) −2411.58 −0.00166944
\(292\) 0 0
\(293\) −1.83275e6 −1.24719 −0.623597 0.781746i \(-0.714329\pi\)
−0.623597 + 0.781746i \(0.714329\pi\)
\(294\) 0 0
\(295\) 1.38008e6 0.923315
\(296\) 0 0
\(297\) −1.29743e6 −0.853478
\(298\) 0 0
\(299\) −597164. −0.386292
\(300\) 0 0
\(301\) −813030. −0.517238
\(302\) 0 0
\(303\) 125859. 0.0787546
\(304\) 0 0
\(305\) 1.08507e6 0.667897
\(306\) 0 0
\(307\) −399979. −0.242209 −0.121105 0.992640i \(-0.538644\pi\)
−0.121105 + 0.992640i \(0.538644\pi\)
\(308\) 0 0
\(309\) −934497. −0.556777
\(310\) 0 0
\(311\) −863087. −0.506004 −0.253002 0.967466i \(-0.581418\pi\)
−0.253002 + 0.967466i \(0.581418\pi\)
\(312\) 0 0
\(313\) 2.42238e6 1.39760 0.698799 0.715318i \(-0.253718\pi\)
0.698799 + 0.715318i \(0.253718\pi\)
\(314\) 0 0
\(315\) −412537. −0.234254
\(316\) 0 0
\(317\) 1.95151e6 1.09074 0.545371 0.838195i \(-0.316389\pi\)
0.545371 + 0.838195i \(0.316389\pi\)
\(318\) 0 0
\(319\) −1.07850e6 −0.593393
\(320\) 0 0
\(321\) 1.42512e6 0.771948
\(322\) 0 0
\(323\) −1.18521e6 −0.632104
\(324\) 0 0
\(325\) 214661. 0.112731
\(326\) 0 0
\(327\) −3.91654e6 −2.02550
\(328\) 0 0
\(329\) −1.51288e6 −0.770575
\(330\) 0 0
\(331\) 1.06373e6 0.533655 0.266827 0.963744i \(-0.414025\pi\)
0.266827 + 0.963744i \(0.414025\pi\)
\(332\) 0 0
\(333\) 1.21941e6 0.602615
\(334\) 0 0
\(335\) −2.28068e6 −1.11033
\(336\) 0 0
\(337\) −2.17731e6 −1.04435 −0.522175 0.852839i \(-0.674879\pi\)
−0.522175 + 0.852839i \(0.674879\pi\)
\(338\) 0 0
\(339\) −2.45776e6 −1.16156
\(340\) 0 0
\(341\) 4.75644e6 2.21511
\(342\) 0 0
\(343\) −2.09074e6 −0.959542
\(344\) 0 0
\(345\) 560944. 0.253730
\(346\) 0 0
\(347\) −241090. −0.107487 −0.0537434 0.998555i \(-0.517115\pi\)
−0.0537434 + 0.998555i \(0.517115\pi\)
\(348\) 0 0
\(349\) −4.02835e6 −1.77037 −0.885184 0.465241i \(-0.845968\pi\)
−0.885184 + 0.465241i \(0.845968\pi\)
\(350\) 0 0
\(351\) −3.05247e6 −1.32246
\(352\) 0 0
\(353\) −386302. −0.165002 −0.0825012 0.996591i \(-0.526291\pi\)
−0.0825012 + 0.996591i \(0.526291\pi\)
\(354\) 0 0
\(355\) −122769. −0.0517034
\(356\) 0 0
\(357\) 2.06946e6 0.859382
\(358\) 0 0
\(359\) −1.72014e6 −0.704414 −0.352207 0.935922i \(-0.614569\pi\)
−0.352207 + 0.935922i \(0.614569\pi\)
\(360\) 0 0
\(361\) −1.85865e6 −0.750635
\(362\) 0 0
\(363\) 1.27384e6 0.507396
\(364\) 0 0
\(365\) 1.71911e6 0.675415
\(366\) 0 0
\(367\) −1.62104e6 −0.628243 −0.314122 0.949383i \(-0.601710\pi\)
−0.314122 + 0.949383i \(0.601710\pi\)
\(368\) 0 0
\(369\) 475858. 0.181933
\(370\) 0 0
\(371\) −239846. −0.0904687
\(372\) 0 0
\(373\) 2.38681e6 0.888271 0.444135 0.895960i \(-0.353511\pi\)
0.444135 + 0.895960i \(0.353511\pi\)
\(374\) 0 0
\(375\) 3.11206e6 1.14280
\(376\) 0 0
\(377\) −2.53739e6 −0.919462
\(378\) 0 0
\(379\) 1.76498e6 0.631165 0.315582 0.948898i \(-0.397800\pi\)
0.315582 + 0.948898i \(0.397800\pi\)
\(380\) 0 0
\(381\) 195551. 0.0690158
\(382\) 0 0
\(383\) 379150. 0.132073 0.0660365 0.997817i \(-0.478965\pi\)
0.0660365 + 0.997817i \(0.478965\pi\)
\(384\) 0 0
\(385\) −2.05813e6 −0.707656
\(386\) 0 0
\(387\) −1.04958e6 −0.356235
\(388\) 0 0
\(389\) 5.37869e6 1.80220 0.901098 0.433615i \(-0.142762\pi\)
0.901098 + 0.433615i \(0.142762\pi\)
\(390\) 0 0
\(391\) −797901. −0.263941
\(392\) 0 0
\(393\) −4.42399e6 −1.44488
\(394\) 0 0
\(395\) −4.76970e6 −1.53815
\(396\) 0 0
\(397\) −5.39076e6 −1.71662 −0.858309 0.513133i \(-0.828485\pi\)
−0.858309 + 0.513133i \(0.828485\pi\)
\(398\) 0 0
\(399\) −1.07811e6 −0.339025
\(400\) 0 0
\(401\) −6.41022e6 −1.99073 −0.995364 0.0961832i \(-0.969337\pi\)
−0.995364 + 0.0961832i \(0.969337\pi\)
\(402\) 0 0
\(403\) 1.11905e7 3.43231
\(404\) 0 0
\(405\) 4.21293e6 1.27628
\(406\) 0 0
\(407\) 6.08361e6 1.82044
\(408\) 0 0
\(409\) −13428.8 −0.00396942 −0.00198471 0.999998i \(-0.500632\pi\)
−0.00198471 + 0.999998i \(0.500632\pi\)
\(410\) 0 0
\(411\) 260831. 0.0761650
\(412\) 0 0
\(413\) −1.78568e6 −0.515145
\(414\) 0 0
\(415\) 4.05953e6 1.15706
\(416\) 0 0
\(417\) 3.95186e6 1.11291
\(418\) 0 0
\(419\) 687589. 0.191335 0.0956674 0.995413i \(-0.469501\pi\)
0.0956674 + 0.995413i \(0.469501\pi\)
\(420\) 0 0
\(421\) 29609.6 0.00814194 0.00407097 0.999992i \(-0.498704\pi\)
0.00407097 + 0.999992i \(0.498704\pi\)
\(422\) 0 0
\(423\) −1.95305e6 −0.530716
\(424\) 0 0
\(425\) 286819. 0.0770257
\(426\) 0 0
\(427\) −1.40397e6 −0.372639
\(428\) 0 0
\(429\) 9.97515e6 2.61683
\(430\) 0 0
\(431\) 3.54961e6 0.920423 0.460212 0.887809i \(-0.347773\pi\)
0.460212 + 0.887809i \(0.347773\pi\)
\(432\) 0 0
\(433\) −5.01538e6 −1.28554 −0.642768 0.766061i \(-0.722214\pi\)
−0.642768 + 0.766061i \(0.722214\pi\)
\(434\) 0 0
\(435\) 2.38349e6 0.603934
\(436\) 0 0
\(437\) 415678. 0.104125
\(438\) 0 0
\(439\) 2.56785e6 0.635928 0.317964 0.948103i \(-0.397001\pi\)
0.317964 + 0.948103i \(0.397001\pi\)
\(440\) 0 0
\(441\) −1.08262e6 −0.265082
\(442\) 0 0
\(443\) 7.42432e6 1.79741 0.898706 0.438552i \(-0.144508\pi\)
0.898706 + 0.438552i \(0.144508\pi\)
\(444\) 0 0
\(445\) 303890. 0.0727473
\(446\) 0 0
\(447\) 8.09977e6 1.91736
\(448\) 0 0
\(449\) −6.24917e6 −1.46287 −0.731436 0.681910i \(-0.761150\pi\)
−0.731436 + 0.681910i \(0.761150\pi\)
\(450\) 0 0
\(451\) 2.37404e6 0.549600
\(452\) 0 0
\(453\) 7.02116e6 1.60755
\(454\) 0 0
\(455\) −4.84218e6 −1.09651
\(456\) 0 0
\(457\) −4.67168e6 −1.04636 −0.523182 0.852221i \(-0.675255\pi\)
−0.523182 + 0.852221i \(0.675255\pi\)
\(458\) 0 0
\(459\) −4.07856e6 −0.903598
\(460\) 0 0
\(461\) −2.59168e6 −0.567975 −0.283987 0.958828i \(-0.591657\pi\)
−0.283987 + 0.958828i \(0.591657\pi\)
\(462\) 0 0
\(463\) 4.52109e6 0.980147 0.490073 0.871681i \(-0.336970\pi\)
0.490073 + 0.871681i \(0.336970\pi\)
\(464\) 0 0
\(465\) −1.05118e7 −2.25446
\(466\) 0 0
\(467\) −2.96158e6 −0.628392 −0.314196 0.949358i \(-0.601735\pi\)
−0.314196 + 0.949358i \(0.601735\pi\)
\(468\) 0 0
\(469\) 2.95096e6 0.619487
\(470\) 0 0
\(471\) 3.83981e6 0.797550
\(472\) 0 0
\(473\) −5.23631e6 −1.07615
\(474\) 0 0
\(475\) −149422. −0.0303866
\(476\) 0 0
\(477\) −309629. −0.0623082
\(478\) 0 0
\(479\) 1.36968e6 0.272760 0.136380 0.990657i \(-0.456453\pi\)
0.136380 + 0.990657i \(0.456453\pi\)
\(480\) 0 0
\(481\) 1.43129e7 2.82076
\(482\) 0 0
\(483\) −725803. −0.141563
\(484\) 0 0
\(485\) 7539.50 0.00145542
\(486\) 0 0
\(487\) −9.09542e6 −1.73780 −0.868901 0.494985i \(-0.835173\pi\)
−0.868901 + 0.494985i \(0.835173\pi\)
\(488\) 0 0
\(489\) −7.82282e6 −1.47942
\(490\) 0 0
\(491\) 1.14589e6 0.214506 0.107253 0.994232i \(-0.465795\pi\)
0.107253 + 0.994232i \(0.465795\pi\)
\(492\) 0 0
\(493\) −3.39034e6 −0.628240
\(494\) 0 0
\(495\) −2.65694e6 −0.487381
\(496\) 0 0
\(497\) 158851. 0.0288469
\(498\) 0 0
\(499\) −985286. −0.177138 −0.0885688 0.996070i \(-0.528229\pi\)
−0.0885688 + 0.996070i \(0.528229\pi\)
\(500\) 0 0
\(501\) −1.04979e7 −1.86856
\(502\) 0 0
\(503\) 2.25682e6 0.397720 0.198860 0.980028i \(-0.436276\pi\)
0.198860 + 0.980028i \(0.436276\pi\)
\(504\) 0 0
\(505\) −393480. −0.0686586
\(506\) 0 0
\(507\) 1.66306e7 2.87335
\(508\) 0 0
\(509\) −5.89974e6 −1.00934 −0.504671 0.863312i \(-0.668386\pi\)
−0.504671 + 0.863312i \(0.668386\pi\)
\(510\) 0 0
\(511\) −2.22435e6 −0.376834
\(512\) 0 0
\(513\) 2.12478e6 0.356469
\(514\) 0 0
\(515\) 2.92158e6 0.485401
\(516\) 0 0
\(517\) −9.74369e6 −1.60323
\(518\) 0 0
\(519\) −1.27989e7 −2.08572
\(520\) 0 0
\(521\) 4.76461e6 0.769012 0.384506 0.923123i \(-0.374372\pi\)
0.384506 + 0.923123i \(0.374372\pi\)
\(522\) 0 0
\(523\) −6.87556e6 −1.09914 −0.549571 0.835447i \(-0.685209\pi\)
−0.549571 + 0.835447i \(0.685209\pi\)
\(524\) 0 0
\(525\) 260902. 0.0413123
\(526\) 0 0
\(527\) 1.49522e7 2.34519
\(528\) 0 0
\(529\) 279841. 0.0434783
\(530\) 0 0
\(531\) −2.30522e6 −0.354794
\(532\) 0 0
\(533\) 5.58541e6 0.851603
\(534\) 0 0
\(535\) −4.45545e6 −0.672987
\(536\) 0 0
\(537\) −3.96965e6 −0.594041
\(538\) 0 0
\(539\) −5.40117e6 −0.800785
\(540\) 0 0
\(541\) 3.42122e6 0.502560 0.251280 0.967914i \(-0.419149\pi\)
0.251280 + 0.967914i \(0.419149\pi\)
\(542\) 0 0
\(543\) 5.12196e6 0.745481
\(544\) 0 0
\(545\) 1.22446e7 1.76584
\(546\) 0 0
\(547\) −804933. −0.115025 −0.0575124 0.998345i \(-0.518317\pi\)
−0.0575124 + 0.998345i \(0.518317\pi\)
\(548\) 0 0
\(549\) −1.81245e6 −0.256647
\(550\) 0 0
\(551\) 1.76624e6 0.247840
\(552\) 0 0
\(553\) 6.17149e6 0.858178
\(554\) 0 0
\(555\) −1.34448e7 −1.85277
\(556\) 0 0
\(557\) −5.46048e6 −0.745749 −0.372875 0.927882i \(-0.621628\pi\)
−0.372875 + 0.927882i \(0.621628\pi\)
\(558\) 0 0
\(559\) −1.23195e7 −1.66749
\(560\) 0 0
\(561\) 1.33283e7 1.78800
\(562\) 0 0
\(563\) 1.34002e7 1.78172 0.890860 0.454278i \(-0.150103\pi\)
0.890860 + 0.454278i \(0.150103\pi\)
\(564\) 0 0
\(565\) 7.68387e6 1.01265
\(566\) 0 0
\(567\) −5.45110e6 −0.712076
\(568\) 0 0
\(569\) −1.34909e7 −1.74687 −0.873437 0.486937i \(-0.838114\pi\)
−0.873437 + 0.486937i \(0.838114\pi\)
\(570\) 0 0
\(571\) −3.26977e6 −0.419688 −0.209844 0.977735i \(-0.567296\pi\)
−0.209844 + 0.977735i \(0.567296\pi\)
\(572\) 0 0
\(573\) 9.62856e6 1.22511
\(574\) 0 0
\(575\) −100594. −0.0126882
\(576\) 0 0
\(577\) −1.45614e7 −1.82081 −0.910404 0.413720i \(-0.864229\pi\)
−0.910404 + 0.413720i \(0.864229\pi\)
\(578\) 0 0
\(579\) −9.83550e6 −1.21927
\(580\) 0 0
\(581\) −5.25261e6 −0.645558
\(582\) 0 0
\(583\) −1.54473e6 −0.188226
\(584\) 0 0
\(585\) −6.25100e6 −0.755196
\(586\) 0 0
\(587\) 6.11740e6 0.732776 0.366388 0.930462i \(-0.380594\pi\)
0.366388 + 0.930462i \(0.380594\pi\)
\(588\) 0 0
\(589\) −7.78956e6 −0.925177
\(590\) 0 0
\(591\) −3.77091e6 −0.444097
\(592\) 0 0
\(593\) 1.58731e7 1.85364 0.926819 0.375509i \(-0.122532\pi\)
0.926819 + 0.375509i \(0.122532\pi\)
\(594\) 0 0
\(595\) −6.46989e6 −0.749212
\(596\) 0 0
\(597\) −4.79812e6 −0.550979
\(598\) 0 0
\(599\) 2.08386e6 0.237302 0.118651 0.992936i \(-0.462143\pi\)
0.118651 + 0.992936i \(0.462143\pi\)
\(600\) 0 0
\(601\) −6.87476e6 −0.776375 −0.388187 0.921580i \(-0.626899\pi\)
−0.388187 + 0.921580i \(0.626899\pi\)
\(602\) 0 0
\(603\) 3.80953e6 0.426657
\(604\) 0 0
\(605\) −3.98249e6 −0.442350
\(606\) 0 0
\(607\) 1.69724e7 1.86970 0.934849 0.355047i \(-0.115535\pi\)
0.934849 + 0.355047i \(0.115535\pi\)
\(608\) 0 0
\(609\) −3.08399e6 −0.336953
\(610\) 0 0
\(611\) −2.29240e7 −2.48421
\(612\) 0 0
\(613\) 1.82930e7 1.96622 0.983112 0.183006i \(-0.0585828\pi\)
0.983112 + 0.183006i \(0.0585828\pi\)
\(614\) 0 0
\(615\) −5.24664e6 −0.559363
\(616\) 0 0
\(617\) 2.49607e6 0.263963 0.131982 0.991252i \(-0.457866\pi\)
0.131982 + 0.991252i \(0.457866\pi\)
\(618\) 0 0
\(619\) 1.07584e7 1.12855 0.564273 0.825588i \(-0.309156\pi\)
0.564273 + 0.825588i \(0.309156\pi\)
\(620\) 0 0
\(621\) 1.43044e6 0.148847
\(622\) 0 0
\(623\) −393203. −0.0405879
\(624\) 0 0
\(625\) −1.03237e7 −1.05715
\(626\) 0 0
\(627\) −6.94357e6 −0.705365
\(628\) 0 0
\(629\) 1.91243e7 1.92734
\(630\) 0 0
\(631\) −4.23020e6 −0.422948 −0.211474 0.977384i \(-0.567826\pi\)
−0.211474 + 0.977384i \(0.567826\pi\)
\(632\) 0 0
\(633\) 3.19200e6 0.316631
\(634\) 0 0
\(635\) −611366. −0.0601682
\(636\) 0 0
\(637\) −1.27074e7 −1.24081
\(638\) 0 0
\(639\) 205068. 0.0198676
\(640\) 0 0
\(641\) −446244. −0.0428971 −0.0214485 0.999770i \(-0.506828\pi\)
−0.0214485 + 0.999770i \(0.506828\pi\)
\(642\) 0 0
\(643\) −6.65817e6 −0.635079 −0.317539 0.948245i \(-0.602857\pi\)
−0.317539 + 0.948245i \(0.602857\pi\)
\(644\) 0 0
\(645\) 1.15723e7 1.09526
\(646\) 0 0
\(647\) 1.13575e7 1.06665 0.533323 0.845912i \(-0.320943\pi\)
0.533323 + 0.845912i \(0.320943\pi\)
\(648\) 0 0
\(649\) −1.15007e7 −1.07179
\(650\) 0 0
\(651\) 1.36011e7 1.25783
\(652\) 0 0
\(653\) 5.69583e6 0.522726 0.261363 0.965241i \(-0.415828\pi\)
0.261363 + 0.965241i \(0.415828\pi\)
\(654\) 0 0
\(655\) 1.38311e7 1.25966
\(656\) 0 0
\(657\) −2.87151e6 −0.259536
\(658\) 0 0
\(659\) 7.16511e6 0.642702 0.321351 0.946960i \(-0.395863\pi\)
0.321351 + 0.946960i \(0.395863\pi\)
\(660\) 0 0
\(661\) 3.66045e6 0.325859 0.162930 0.986638i \(-0.447906\pi\)
0.162930 + 0.986638i \(0.447906\pi\)
\(662\) 0 0
\(663\) 3.13576e7 2.77050
\(664\) 0 0
\(665\) 3.37058e6 0.295564
\(666\) 0 0
\(667\) 1.18906e6 0.103488
\(668\) 0 0
\(669\) 9.01685e6 0.778914
\(670\) 0 0
\(671\) −9.04226e6 −0.775302
\(672\) 0 0
\(673\) −1.70068e6 −0.144739 −0.0723694 0.997378i \(-0.523056\pi\)
−0.0723694 + 0.997378i \(0.523056\pi\)
\(674\) 0 0
\(675\) −514195. −0.0434379
\(676\) 0 0
\(677\) 2.22659e6 0.186711 0.0933553 0.995633i \(-0.470241\pi\)
0.0933553 + 0.995633i \(0.470241\pi\)
\(678\) 0 0
\(679\) −9755.34 −0.000812022 0
\(680\) 0 0
\(681\) 1.68163e7 1.38951
\(682\) 0 0
\(683\) 1.52068e7 1.24734 0.623672 0.781686i \(-0.285640\pi\)
0.623672 + 0.781686i \(0.285640\pi\)
\(684\) 0 0
\(685\) −815456. −0.0664009
\(686\) 0 0
\(687\) 1.42844e7 1.15470
\(688\) 0 0
\(689\) −3.63429e6 −0.291656
\(690\) 0 0
\(691\) −3.12898e6 −0.249292 −0.124646 0.992201i \(-0.539779\pi\)
−0.124646 + 0.992201i \(0.539779\pi\)
\(692\) 0 0
\(693\) 3.43780e6 0.271924
\(694\) 0 0
\(695\) −1.23550e7 −0.970242
\(696\) 0 0
\(697\) 7.46296e6 0.581874
\(698\) 0 0
\(699\) −2.24322e7 −1.73652
\(700\) 0 0
\(701\) 1.63658e7 1.25789 0.628943 0.777452i \(-0.283488\pi\)
0.628943 + 0.777452i \(0.283488\pi\)
\(702\) 0 0
\(703\) −9.96306e6 −0.760334
\(704\) 0 0
\(705\) 2.15336e7 1.63171
\(706\) 0 0
\(707\) 509123. 0.0383066
\(708\) 0 0
\(709\) −9.06223e6 −0.677048 −0.338524 0.940958i \(-0.609928\pi\)
−0.338524 + 0.940958i \(0.609928\pi\)
\(710\) 0 0
\(711\) 7.96706e6 0.591050
\(712\) 0 0
\(713\) −5.24406e6 −0.386317
\(714\) 0 0
\(715\) −3.11860e7 −2.28137
\(716\) 0 0
\(717\) −2.13384e7 −1.55011
\(718\) 0 0
\(719\) −1.77767e7 −1.28241 −0.641207 0.767368i \(-0.721566\pi\)
−0.641207 + 0.767368i \(0.721566\pi\)
\(720\) 0 0
\(721\) −3.78023e6 −0.270819
\(722\) 0 0
\(723\) −5.86959e6 −0.417601
\(724\) 0 0
\(725\) −427429. −0.0302008
\(726\) 0 0
\(727\) 1.54462e7 1.08389 0.541946 0.840413i \(-0.317688\pi\)
0.541946 + 0.840413i \(0.317688\pi\)
\(728\) 0 0
\(729\) 5.06421e6 0.352933
\(730\) 0 0
\(731\) −1.64607e7 −1.13934
\(732\) 0 0
\(733\) 1.99063e7 1.36845 0.684226 0.729270i \(-0.260140\pi\)
0.684226 + 0.729270i \(0.260140\pi\)
\(734\) 0 0
\(735\) 1.19366e7 0.815010
\(736\) 0 0
\(737\) 1.90056e7 1.28888
\(738\) 0 0
\(739\) 1.06607e7 0.718083 0.359041 0.933322i \(-0.383104\pi\)
0.359041 + 0.933322i \(0.383104\pi\)
\(740\) 0 0
\(741\) −1.63362e7 −1.09296
\(742\) 0 0
\(743\) 1.43627e7 0.954476 0.477238 0.878774i \(-0.341638\pi\)
0.477238 + 0.878774i \(0.341638\pi\)
\(744\) 0 0
\(745\) −2.53229e7 −1.67156
\(746\) 0 0
\(747\) −6.78084e6 −0.444613
\(748\) 0 0
\(749\) 5.76489e6 0.375480
\(750\) 0 0
\(751\) −1.67371e7 −1.08288 −0.541439 0.840740i \(-0.682120\pi\)
−0.541439 + 0.840740i \(0.682120\pi\)
\(752\) 0 0
\(753\) 4.29287e6 0.275905
\(754\) 0 0
\(755\) −2.19507e7 −1.40146
\(756\) 0 0
\(757\) −1.02546e7 −0.650398 −0.325199 0.945646i \(-0.605431\pi\)
−0.325199 + 0.945646i \(0.605431\pi\)
\(758\) 0 0
\(759\) −4.67452e6 −0.294532
\(760\) 0 0
\(761\) −6.43275e6 −0.402657 −0.201328 0.979524i \(-0.564526\pi\)
−0.201328 + 0.979524i \(0.564526\pi\)
\(762\) 0 0
\(763\) −1.58432e7 −0.985216
\(764\) 0 0
\(765\) −8.35228e6 −0.516002
\(766\) 0 0
\(767\) −2.70577e7 −1.66074
\(768\) 0 0
\(769\) −1.87869e7 −1.14561 −0.572807 0.819690i \(-0.694146\pi\)
−0.572807 + 0.819690i \(0.694146\pi\)
\(770\) 0 0
\(771\) 2.85275e7 1.72833
\(772\) 0 0
\(773\) 1.91258e7 1.15126 0.575628 0.817712i \(-0.304758\pi\)
0.575628 + 0.817712i \(0.304758\pi\)
\(774\) 0 0
\(775\) 1.88507e6 0.112738
\(776\) 0 0
\(777\) 1.73962e7 1.03372
\(778\) 0 0
\(779\) −3.88793e6 −0.229549
\(780\) 0 0
\(781\) 1.02308e6 0.0600179
\(782\) 0 0
\(783\) 6.07803e6 0.354289
\(784\) 0 0
\(785\) −1.20047e7 −0.695307
\(786\) 0 0
\(787\) 2.51823e7 1.44930 0.724649 0.689118i \(-0.242002\pi\)
0.724649 + 0.689118i \(0.242002\pi\)
\(788\) 0 0
\(789\) −1.91575e7 −1.09559
\(790\) 0 0
\(791\) −9.94213e6 −0.564987
\(792\) 0 0
\(793\) −2.12738e7 −1.20133
\(794\) 0 0
\(795\) 3.41386e6 0.191570
\(796\) 0 0
\(797\) 2.77755e7 1.54887 0.774437 0.632651i \(-0.218033\pi\)
0.774437 + 0.632651i \(0.218033\pi\)
\(798\) 0 0
\(799\) −3.06300e7 −1.69738
\(800\) 0 0
\(801\) −507603. −0.0279539
\(802\) 0 0
\(803\) −1.43259e7 −0.784029
\(804\) 0 0
\(805\) 2.26913e6 0.123415
\(806\) 0 0
\(807\) −2.39189e7 −1.29288
\(808\) 0 0
\(809\) 9.12918e6 0.490411 0.245206 0.969471i \(-0.421145\pi\)
0.245206 + 0.969471i \(0.421145\pi\)
\(810\) 0 0
\(811\) 2.85495e7 1.52422 0.762109 0.647449i \(-0.224164\pi\)
0.762109 + 0.647449i \(0.224164\pi\)
\(812\) 0 0
\(813\) 2.70159e7 1.43348
\(814\) 0 0
\(815\) 2.44570e7 1.28976
\(816\) 0 0
\(817\) 8.57544e6 0.449470
\(818\) 0 0
\(819\) 8.08814e6 0.421346
\(820\) 0 0
\(821\) −7.96909e6 −0.412621 −0.206310 0.978487i \(-0.566146\pi\)
−0.206310 + 0.978487i \(0.566146\pi\)
\(822\) 0 0
\(823\) −2.63742e7 −1.35731 −0.678657 0.734456i \(-0.737438\pi\)
−0.678657 + 0.734456i \(0.737438\pi\)
\(824\) 0 0
\(825\) 1.68034e6 0.0859531
\(826\) 0 0
\(827\) −1.97623e7 −1.00479 −0.502393 0.864639i \(-0.667547\pi\)
−0.502393 + 0.864639i \(0.667547\pi\)
\(828\) 0 0
\(829\) −1.76929e7 −0.894155 −0.447078 0.894495i \(-0.647535\pi\)
−0.447078 + 0.894495i \(0.647535\pi\)
\(830\) 0 0
\(831\) 2.98049e7 1.49722
\(832\) 0 0
\(833\) −1.69790e7 −0.847810
\(834\) 0 0
\(835\) 3.28203e7 1.62902
\(836\) 0 0
\(837\) −2.68056e7 −1.32255
\(838\) 0 0
\(839\) −3.17557e7 −1.55746 −0.778729 0.627360i \(-0.784135\pi\)
−0.778729 + 0.627360i \(0.784135\pi\)
\(840\) 0 0
\(841\) −1.54587e7 −0.753675
\(842\) 0 0
\(843\) −3.51939e7 −1.70568
\(844\) 0 0
\(845\) −5.19934e7 −2.50499
\(846\) 0 0
\(847\) 5.15293e6 0.246800
\(848\) 0 0
\(849\) 1.40357e7 0.668292
\(850\) 0 0
\(851\) −6.70729e6 −0.317485
\(852\) 0 0
\(853\) −1.92334e6 −0.0905075 −0.0452537 0.998976i \(-0.514410\pi\)
−0.0452537 + 0.998976i \(0.514410\pi\)
\(854\) 0 0
\(855\) 4.35124e6 0.203562
\(856\) 0 0
\(857\) 1.68379e7 0.783133 0.391566 0.920150i \(-0.371933\pi\)
0.391566 + 0.920150i \(0.371933\pi\)
\(858\) 0 0
\(859\) 1.29887e7 0.600596 0.300298 0.953845i \(-0.402914\pi\)
0.300298 + 0.953845i \(0.402914\pi\)
\(860\) 0 0
\(861\) 6.78861e6 0.312085
\(862\) 0 0
\(863\) −3.47187e7 −1.58685 −0.793426 0.608667i \(-0.791704\pi\)
−0.793426 + 0.608667i \(0.791704\pi\)
\(864\) 0 0
\(865\) 4.00142e7 1.81834
\(866\) 0 0
\(867\) 1.57494e7 0.711569
\(868\) 0 0
\(869\) 3.97474e7 1.78550
\(870\) 0 0
\(871\) 4.47147e7 1.99712
\(872\) 0 0
\(873\) −12593.6 −0.000559261 0
\(874\) 0 0
\(875\) 1.25889e7 0.555864
\(876\) 0 0
\(877\) 5.84624e6 0.256672 0.128336 0.991731i \(-0.459036\pi\)
0.128336 + 0.991731i \(0.459036\pi\)
\(878\) 0 0
\(879\) −3.37532e7 −1.47347
\(880\) 0 0
\(881\) 4.26374e7 1.85076 0.925381 0.379038i \(-0.123745\pi\)
0.925381 + 0.379038i \(0.123745\pi\)
\(882\) 0 0
\(883\) 4.33814e7 1.87241 0.936206 0.351452i \(-0.114312\pi\)
0.936206 + 0.351452i \(0.114312\pi\)
\(884\) 0 0
\(885\) 2.54165e7 1.09083
\(886\) 0 0
\(887\) 1.09428e7 0.467005 0.233502 0.972356i \(-0.424981\pi\)
0.233502 + 0.972356i \(0.424981\pi\)
\(888\) 0 0
\(889\) 791045. 0.0335696
\(890\) 0 0
\(891\) −3.51077e7 −1.48152
\(892\) 0 0
\(893\) 1.59571e7 0.669616
\(894\) 0 0
\(895\) 1.24106e7 0.517887
\(896\) 0 0
\(897\) −1.09978e7 −0.456377
\(898\) 0 0
\(899\) −2.22824e7 −0.919522
\(900\) 0 0
\(901\) −4.85596e6 −0.199280
\(902\) 0 0
\(903\) −1.49733e7 −0.611081
\(904\) 0 0
\(905\) −1.60132e7 −0.649913
\(906\) 0 0
\(907\) −3.69879e7 −1.49294 −0.746468 0.665422i \(-0.768252\pi\)
−0.746468 + 0.665422i \(0.768252\pi\)
\(908\) 0 0
\(909\) 657250. 0.0263828
\(910\) 0 0
\(911\) 3.50997e6 0.140122 0.0700612 0.997543i \(-0.477681\pi\)
0.0700612 + 0.997543i \(0.477681\pi\)
\(912\) 0 0
\(913\) −3.38294e7 −1.34313
\(914\) 0 0
\(915\) 1.99835e7 0.789074
\(916\) 0 0
\(917\) −1.78959e7 −0.702799
\(918\) 0 0
\(919\) 3.64427e7 1.42338 0.711691 0.702492i \(-0.247930\pi\)
0.711691 + 0.702492i \(0.247930\pi\)
\(920\) 0 0
\(921\) −7.36628e6 −0.286154
\(922\) 0 0
\(923\) 2.40700e6 0.0929976
\(924\) 0 0
\(925\) 2.41105e6 0.0926513
\(926\) 0 0
\(927\) −4.88007e6 −0.186520
\(928\) 0 0
\(929\) −2.35875e7 −0.896692 −0.448346 0.893860i \(-0.647987\pi\)
−0.448346 + 0.893860i \(0.647987\pi\)
\(930\) 0 0
\(931\) 8.84543e6 0.334460
\(932\) 0 0
\(933\) −1.58952e7 −0.597808
\(934\) 0 0
\(935\) −4.16693e7 −1.55879
\(936\) 0 0
\(937\) 7.72449e6 0.287423 0.143711 0.989620i \(-0.454096\pi\)
0.143711 + 0.989620i \(0.454096\pi\)
\(938\) 0 0
\(939\) 4.46123e7 1.65116
\(940\) 0 0
\(941\) 388339. 0.0142967 0.00714837 0.999974i \(-0.497725\pi\)
0.00714837 + 0.999974i \(0.497725\pi\)
\(942\) 0 0
\(943\) −2.61742e6 −0.0958504
\(944\) 0 0
\(945\) 1.15989e7 0.422511
\(946\) 0 0
\(947\) 3.43933e7 1.24623 0.623115 0.782130i \(-0.285867\pi\)
0.623115 + 0.782130i \(0.285867\pi\)
\(948\) 0 0
\(949\) −3.37046e7 −1.21485
\(950\) 0 0
\(951\) 3.59403e7 1.28864
\(952\) 0 0
\(953\) 1.09806e7 0.391646 0.195823 0.980639i \(-0.437262\pi\)
0.195823 + 0.980639i \(0.437262\pi\)
\(954\) 0 0
\(955\) −3.01025e7 −1.06805
\(956\) 0 0
\(957\) −1.98624e7 −0.701053
\(958\) 0 0
\(959\) 1.05512e6 0.0370470
\(960\) 0 0
\(961\) 6.96415e7 2.43254
\(962\) 0 0
\(963\) 7.44216e6 0.258603
\(964\) 0 0
\(965\) 3.07494e7 1.06296
\(966\) 0 0
\(967\) 2.78573e7 0.958017 0.479008 0.877810i \(-0.340996\pi\)
0.479008 + 0.877810i \(0.340996\pi\)
\(968\) 0 0
\(969\) −2.18276e7 −0.746787
\(970\) 0 0
\(971\) 5.08273e7 1.73001 0.865005 0.501763i \(-0.167315\pi\)
0.865005 + 0.501763i \(0.167315\pi\)
\(972\) 0 0
\(973\) 1.59861e7 0.541327
\(974\) 0 0
\(975\) 3.95334e6 0.133184
\(976\) 0 0
\(977\) −2.75054e7 −0.921894 −0.460947 0.887428i \(-0.652490\pi\)
−0.460947 + 0.887428i \(0.652490\pi\)
\(978\) 0 0
\(979\) −2.53242e6 −0.0844459
\(980\) 0 0
\(981\) −2.04527e7 −0.678544
\(982\) 0 0
\(983\) 3.07264e7 1.01421 0.507105 0.861884i \(-0.330715\pi\)
0.507105 + 0.861884i \(0.330715\pi\)
\(984\) 0 0
\(985\) 1.17893e7 0.387165
\(986\) 0 0
\(987\) −2.78623e7 −0.910382
\(988\) 0 0
\(989\) 5.77312e6 0.187681
\(990\) 0 0
\(991\) −2.22331e7 −0.719143 −0.359571 0.933118i \(-0.617077\pi\)
−0.359571 + 0.933118i \(0.617077\pi\)
\(992\) 0 0
\(993\) 1.95903e7 0.630476
\(994\) 0 0
\(995\) 1.50007e7 0.480345
\(996\) 0 0
\(997\) 1.57756e7 0.502629 0.251315 0.967905i \(-0.419137\pi\)
0.251315 + 0.967905i \(0.419137\pi\)
\(998\) 0 0
\(999\) −3.42850e7 −1.08690
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 92.6.a.b.1.3 4
3.2 odd 2 828.6.a.b.1.3 4
4.3 odd 2 368.6.a.f.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.6.a.b.1.3 4 1.1 even 1 trivial
368.6.a.f.1.2 4 4.3 odd 2
828.6.a.b.1.3 4 3.2 odd 2