Properties

Label 2-92-92.15-c1-0-4
Degree $2$
Conductor $92$
Sign $0.577 - 0.816i$
Analytic cond. $0.734623$
Root an. cond. $0.857101$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0506 + 1.41i)2-s + (1.95 − 0.891i)3-s + (−1.99 + 0.143i)4-s + (−1.03 + 0.895i)5-s + (1.35 + 2.71i)6-s + (2.14 + 1.38i)7-s + (−0.303 − 2.81i)8-s + (1.04 − 1.21i)9-s + (−1.31 − 1.41i)10-s + (−0.745 − 5.18i)11-s + (−3.76 + 2.05i)12-s + (−3.68 + 2.37i)13-s + (−1.84 + 3.10i)14-s + (−1.21 + 2.66i)15-s + (3.95 − 0.571i)16-s + (−0.725 − 2.46i)17-s + ⋯
L(s)  = 1  + (0.0358 + 0.999i)2-s + (1.12 − 0.514i)3-s + (−0.997 + 0.0715i)4-s + (−0.461 + 0.400i)5-s + (0.554 + 1.10i)6-s + (0.811 + 0.521i)7-s + (−0.107 − 0.994i)8-s + (0.349 − 0.403i)9-s + (−0.416 − 0.447i)10-s + (−0.224 − 1.56i)11-s + (−1.08 + 0.593i)12-s + (−1.02 + 0.657i)13-s + (−0.492 + 0.829i)14-s + (−0.314 + 0.688i)15-s + (0.989 − 0.142i)16-s + (−0.175 − 0.598i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(92\)    =    \(2^{2} \cdot 23\)
Sign: $0.577 - 0.816i$
Analytic conductor: \(0.734623\)
Root analytic conductor: \(0.857101\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{92} (15, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 92,\ (\ :1/2),\ 0.577 - 0.816i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.05165 + 0.544593i\)
\(L(\frac12)\) \(\approx\) \(1.05165 + 0.544593i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.0506 - 1.41i)T \)
23 \( 1 + (1.53 + 4.54i)T \)
good3 \( 1 + (-1.95 + 0.891i)T + (1.96 - 2.26i)T^{2} \)
5 \( 1 + (1.03 - 0.895i)T + (0.711 - 4.94i)T^{2} \)
7 \( 1 + (-2.14 - 1.38i)T + (2.90 + 6.36i)T^{2} \)
11 \( 1 + (0.745 + 5.18i)T + (-10.5 + 3.09i)T^{2} \)
13 \( 1 + (3.68 - 2.37i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (0.725 + 2.46i)T + (-14.3 + 9.19i)T^{2} \)
19 \( 1 + (2.83 + 0.832i)T + (15.9 + 10.2i)T^{2} \)
29 \( 1 + (-4.83 + 1.42i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (-5.16 - 2.35i)T + (20.3 + 23.4i)T^{2} \)
37 \( 1 + (0.714 + 0.618i)T + (5.26 + 36.6i)T^{2} \)
41 \( 1 + (-3.41 - 3.94i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (-2.17 - 4.75i)T + (-28.1 + 32.4i)T^{2} \)
47 \( 1 - 6.04iT - 47T^{2} \)
53 \( 1 + (6.78 - 10.5i)T + (-22.0 - 48.2i)T^{2} \)
59 \( 1 + (2.90 + 4.51i)T + (-24.5 + 53.6i)T^{2} \)
61 \( 1 + (1.40 + 0.643i)T + (39.9 + 46.1i)T^{2} \)
67 \( 1 + (-2.03 + 14.1i)T + (-64.2 - 18.8i)T^{2} \)
71 \( 1 + (6.01 + 0.864i)T + (68.1 + 20.0i)T^{2} \)
73 \( 1 + (-13.9 - 4.10i)T + (61.4 + 39.4i)T^{2} \)
79 \( 1 + (-1.15 + 0.739i)T + (32.8 - 71.8i)T^{2} \)
83 \( 1 + (-6.21 + 7.17i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (6.34 - 2.89i)T + (58.2 - 67.2i)T^{2} \)
97 \( 1 + (-3.24 + 2.81i)T + (13.8 - 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23853046128078352346731319267, −13.75374961393653118608397078528, −12.40533598833556161628366404832, −11.06962585393885949498262365507, −9.256213579052269907285696975184, −8.340517423796097276391225870094, −7.72334660618335970756772908688, −6.40456715677746036514743919782, −4.72926229481682348132017256107, −2.88266816260284670210028246568, 2.27282752084962362412821926846, 4.00294090932685059375795407283, 4.82415942749462416984295940115, 7.71249699776801153223336948074, 8.460130170548704165902577841040, 9.759897317207274418110936947410, 10.40118004125477619741502054884, 11.91368242812691401116835330986, 12.71991526058025249032069050317, 13.95829897538232068935995516089

Graph of the $Z$-function along the critical line