L(s) = 1 | + (0.0506 + 1.41i)2-s + (1.95 − 0.891i)3-s + (−1.99 + 0.143i)4-s + (−1.03 + 0.895i)5-s + (1.35 + 2.71i)6-s + (2.14 + 1.38i)7-s + (−0.303 − 2.81i)8-s + (1.04 − 1.21i)9-s + (−1.31 − 1.41i)10-s + (−0.745 − 5.18i)11-s + (−3.76 + 2.05i)12-s + (−3.68 + 2.37i)13-s + (−1.84 + 3.10i)14-s + (−1.21 + 2.66i)15-s + (3.95 − 0.571i)16-s + (−0.725 − 2.46i)17-s + ⋯ |
L(s) = 1 | + (0.0358 + 0.999i)2-s + (1.12 − 0.514i)3-s + (−0.997 + 0.0715i)4-s + (−0.461 + 0.400i)5-s + (0.554 + 1.10i)6-s + (0.811 + 0.521i)7-s + (−0.107 − 0.994i)8-s + (0.349 − 0.403i)9-s + (−0.416 − 0.447i)10-s + (−0.224 − 1.56i)11-s + (−1.08 + 0.593i)12-s + (−1.02 + 0.657i)13-s + (−0.492 + 0.829i)14-s + (−0.314 + 0.688i)15-s + (0.989 − 0.142i)16-s + (−0.175 − 0.598i)17-s + ⋯ |
Λ(s)=(=(92s/2ΓC(s)L(s)(0.577−0.816i)Λ(2−s)
Λ(s)=(=(92s/2ΓC(s+1/2)L(s)(0.577−0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
92
= 22⋅23
|
Sign: |
0.577−0.816i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ92(15,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 92, ( :1/2), 0.577−0.816i)
|
Particular Values
L(1) |
≈ |
1.05165+0.544593i |
L(21) |
≈ |
1.05165+0.544593i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0506−1.41i)T |
| 23 | 1+(1.53+4.54i)T |
good | 3 | 1+(−1.95+0.891i)T+(1.96−2.26i)T2 |
| 5 | 1+(1.03−0.895i)T+(0.711−4.94i)T2 |
| 7 | 1+(−2.14−1.38i)T+(2.90+6.36i)T2 |
| 11 | 1+(0.745+5.18i)T+(−10.5+3.09i)T2 |
| 13 | 1+(3.68−2.37i)T+(5.40−11.8i)T2 |
| 17 | 1+(0.725+2.46i)T+(−14.3+9.19i)T2 |
| 19 | 1+(2.83+0.832i)T+(15.9+10.2i)T2 |
| 29 | 1+(−4.83+1.42i)T+(24.3−15.6i)T2 |
| 31 | 1+(−5.16−2.35i)T+(20.3+23.4i)T2 |
| 37 | 1+(0.714+0.618i)T+(5.26+36.6i)T2 |
| 41 | 1+(−3.41−3.94i)T+(−5.83+40.5i)T2 |
| 43 | 1+(−2.17−4.75i)T+(−28.1+32.4i)T2 |
| 47 | 1−6.04iT−47T2 |
| 53 | 1+(6.78−10.5i)T+(−22.0−48.2i)T2 |
| 59 | 1+(2.90+4.51i)T+(−24.5+53.6i)T2 |
| 61 | 1+(1.40+0.643i)T+(39.9+46.1i)T2 |
| 67 | 1+(−2.03+14.1i)T+(−64.2−18.8i)T2 |
| 71 | 1+(6.01+0.864i)T+(68.1+20.0i)T2 |
| 73 | 1+(−13.9−4.10i)T+(61.4+39.4i)T2 |
| 79 | 1+(−1.15+0.739i)T+(32.8−71.8i)T2 |
| 83 | 1+(−6.21+7.17i)T+(−11.8−82.1i)T2 |
| 89 | 1+(6.34−2.89i)T+(58.2−67.2i)T2 |
| 97 | 1+(−3.24+2.81i)T+(13.8−96.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.23853046128078352346731319267, −13.75374961393653118608397078528, −12.40533598833556161628366404832, −11.06962585393885949498262365507, −9.256213579052269907285696975184, −8.340517423796097276391225870094, −7.72334660618335970756772908688, −6.40456715677746036514743919782, −4.72926229481682348132017256107, −2.88266816260284670210028246568,
2.27282752084962362412821926846, 4.00294090932685059375795407283, 4.82415942749462416984295940115, 7.71249699776801153223336948074, 8.460130170548704165902577841040, 9.759897317207274418110936947410, 10.40118004125477619741502054884, 11.91368242812691401116835330986, 12.71991526058025249032069050317, 13.95829897538232068935995516089