Properties

Label 2-92-92.43-c1-0-5
Degree 22
Conductor 9292
Sign 0.577+0.816i0.577 + 0.816i
Analytic cond. 0.7346230.734623
Root an. cond. 0.8571010.857101
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.0506 − 1.41i)2-s + (1.95 + 0.891i)3-s + (−1.99 − 0.143i)4-s + (−1.03 − 0.895i)5-s + (1.35 − 2.71i)6-s + (2.14 − 1.38i)7-s + (−0.303 + 2.81i)8-s + (1.04 + 1.21i)9-s + (−1.31 + 1.41i)10-s + (−0.745 + 5.18i)11-s + (−3.76 − 2.05i)12-s + (−3.68 − 2.37i)13-s + (−1.84 − 3.10i)14-s + (−1.21 − 2.66i)15-s + (3.95 + 0.571i)16-s + (−0.725 + 2.46i)17-s + ⋯
L(s)  = 1  + (0.0358 − 0.999i)2-s + (1.12 + 0.514i)3-s + (−0.997 − 0.0715i)4-s + (−0.461 − 0.400i)5-s + (0.554 − 1.10i)6-s + (0.811 − 0.521i)7-s + (−0.107 + 0.994i)8-s + (0.349 + 0.403i)9-s + (−0.416 + 0.447i)10-s + (−0.224 + 1.56i)11-s + (−1.08 − 0.593i)12-s + (−1.02 − 0.657i)13-s + (−0.492 − 0.829i)14-s + (−0.314 − 0.688i)15-s + (0.989 + 0.142i)16-s + (−0.175 + 0.598i)17-s + ⋯

Functional equation

Λ(s)=(92s/2ΓC(s)L(s)=((0.577+0.816i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(92s/2ΓC(s+1/2)L(s)=((0.577+0.816i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 9292    =    22232^{2} \cdot 23
Sign: 0.577+0.816i0.577 + 0.816i
Analytic conductor: 0.7346230.734623
Root analytic conductor: 0.8571010.857101
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ92(43,)\chi_{92} (43, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 92, ( :1/2), 0.577+0.816i)(2,\ 92,\ (\ :1/2),\ 0.577 + 0.816i)

Particular Values

L(1)L(1) \approx 1.051650.544593i1.05165 - 0.544593i
L(12)L(\frac12) \approx 1.051650.544593i1.05165 - 0.544593i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.0506+1.41i)T 1 + (-0.0506 + 1.41i)T
23 1+(1.534.54i)T 1 + (1.53 - 4.54i)T
good3 1+(1.950.891i)T+(1.96+2.26i)T2 1 + (-1.95 - 0.891i)T + (1.96 + 2.26i)T^{2}
5 1+(1.03+0.895i)T+(0.711+4.94i)T2 1 + (1.03 + 0.895i)T + (0.711 + 4.94i)T^{2}
7 1+(2.14+1.38i)T+(2.906.36i)T2 1 + (-2.14 + 1.38i)T + (2.90 - 6.36i)T^{2}
11 1+(0.7455.18i)T+(10.53.09i)T2 1 + (0.745 - 5.18i)T + (-10.5 - 3.09i)T^{2}
13 1+(3.68+2.37i)T+(5.40+11.8i)T2 1 + (3.68 + 2.37i)T + (5.40 + 11.8i)T^{2}
17 1+(0.7252.46i)T+(14.39.19i)T2 1 + (0.725 - 2.46i)T + (-14.3 - 9.19i)T^{2}
19 1+(2.830.832i)T+(15.910.2i)T2 1 + (2.83 - 0.832i)T + (15.9 - 10.2i)T^{2}
29 1+(4.831.42i)T+(24.3+15.6i)T2 1 + (-4.83 - 1.42i)T + (24.3 + 15.6i)T^{2}
31 1+(5.16+2.35i)T+(20.323.4i)T2 1 + (-5.16 + 2.35i)T + (20.3 - 23.4i)T^{2}
37 1+(0.7140.618i)T+(5.2636.6i)T2 1 + (0.714 - 0.618i)T + (5.26 - 36.6i)T^{2}
41 1+(3.41+3.94i)T+(5.8340.5i)T2 1 + (-3.41 + 3.94i)T + (-5.83 - 40.5i)T^{2}
43 1+(2.17+4.75i)T+(28.132.4i)T2 1 + (-2.17 + 4.75i)T + (-28.1 - 32.4i)T^{2}
47 1+6.04iT47T2 1 + 6.04iT - 47T^{2}
53 1+(6.78+10.5i)T+(22.0+48.2i)T2 1 + (6.78 + 10.5i)T + (-22.0 + 48.2i)T^{2}
59 1+(2.904.51i)T+(24.553.6i)T2 1 + (2.90 - 4.51i)T + (-24.5 - 53.6i)T^{2}
61 1+(1.400.643i)T+(39.946.1i)T2 1 + (1.40 - 0.643i)T + (39.9 - 46.1i)T^{2}
67 1+(2.0314.1i)T+(64.2+18.8i)T2 1 + (-2.03 - 14.1i)T + (-64.2 + 18.8i)T^{2}
71 1+(6.010.864i)T+(68.120.0i)T2 1 + (6.01 - 0.864i)T + (68.1 - 20.0i)T^{2}
73 1+(13.9+4.10i)T+(61.439.4i)T2 1 + (-13.9 + 4.10i)T + (61.4 - 39.4i)T^{2}
79 1+(1.150.739i)T+(32.8+71.8i)T2 1 + (-1.15 - 0.739i)T + (32.8 + 71.8i)T^{2}
83 1+(6.217.17i)T+(11.8+82.1i)T2 1 + (-6.21 - 7.17i)T + (-11.8 + 82.1i)T^{2}
89 1+(6.34+2.89i)T+(58.2+67.2i)T2 1 + (6.34 + 2.89i)T + (58.2 + 67.2i)T^{2}
97 1+(3.242.81i)T+(13.8+96.0i)T2 1 + (-3.24 - 2.81i)T + (13.8 + 96.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−13.95829897538232068935995516089, −12.71991526058025249032069050317, −11.91368242812691401116835330986, −10.40118004125477619741502054884, −9.759897317207274418110936947410, −8.460130170548704165902577841040, −7.71249699776801153223336948074, −4.82415942749462416984295940115, −4.00294090932685059375795407283, −2.27282752084962362412821926846, 2.88266816260284670210028246568, 4.72926229481682348132017256107, 6.40456715677746036514743919782, 7.72334660618335970756772908688, 8.340517423796097276391225870094, 9.256213579052269907285696975184, 11.06962585393885949498262365507, 12.40533598833556161628366404832, 13.75374961393653118608397078528, 14.23853046128078352346731319267

Graph of the ZZ-function along the critical line