L(s) = 1 | + (0.0506 − 1.41i)2-s + (1.95 + 0.891i)3-s + (−1.99 − 0.143i)4-s + (−1.03 − 0.895i)5-s + (1.35 − 2.71i)6-s + (2.14 − 1.38i)7-s + (−0.303 + 2.81i)8-s + (1.04 + 1.21i)9-s + (−1.31 + 1.41i)10-s + (−0.745 + 5.18i)11-s + (−3.76 − 2.05i)12-s + (−3.68 − 2.37i)13-s + (−1.84 − 3.10i)14-s + (−1.21 − 2.66i)15-s + (3.95 + 0.571i)16-s + (−0.725 + 2.46i)17-s + ⋯ |
L(s) = 1 | + (0.0358 − 0.999i)2-s + (1.12 + 0.514i)3-s + (−0.997 − 0.0715i)4-s + (−0.461 − 0.400i)5-s + (0.554 − 1.10i)6-s + (0.811 − 0.521i)7-s + (−0.107 + 0.994i)8-s + (0.349 + 0.403i)9-s + (−0.416 + 0.447i)10-s + (−0.224 + 1.56i)11-s + (−1.08 − 0.593i)12-s + (−1.02 − 0.657i)13-s + (−0.492 − 0.829i)14-s + (−0.314 − 0.688i)15-s + (0.989 + 0.142i)16-s + (−0.175 + 0.598i)17-s + ⋯ |
Λ(s)=(=(92s/2ΓC(s)L(s)(0.577+0.816i)Λ(2−s)
Λ(s)=(=(92s/2ΓC(s+1/2)L(s)(0.577+0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
92
= 22⋅23
|
Sign: |
0.577+0.816i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ92(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 92, ( :1/2), 0.577+0.816i)
|
Particular Values
L(1) |
≈ |
1.05165−0.544593i |
L(21) |
≈ |
1.05165−0.544593i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.0506+1.41i)T |
| 23 | 1+(1.53−4.54i)T |
good | 3 | 1+(−1.95−0.891i)T+(1.96+2.26i)T2 |
| 5 | 1+(1.03+0.895i)T+(0.711+4.94i)T2 |
| 7 | 1+(−2.14+1.38i)T+(2.90−6.36i)T2 |
| 11 | 1+(0.745−5.18i)T+(−10.5−3.09i)T2 |
| 13 | 1+(3.68+2.37i)T+(5.40+11.8i)T2 |
| 17 | 1+(0.725−2.46i)T+(−14.3−9.19i)T2 |
| 19 | 1+(2.83−0.832i)T+(15.9−10.2i)T2 |
| 29 | 1+(−4.83−1.42i)T+(24.3+15.6i)T2 |
| 31 | 1+(−5.16+2.35i)T+(20.3−23.4i)T2 |
| 37 | 1+(0.714−0.618i)T+(5.26−36.6i)T2 |
| 41 | 1+(−3.41+3.94i)T+(−5.83−40.5i)T2 |
| 43 | 1+(−2.17+4.75i)T+(−28.1−32.4i)T2 |
| 47 | 1+6.04iT−47T2 |
| 53 | 1+(6.78+10.5i)T+(−22.0+48.2i)T2 |
| 59 | 1+(2.90−4.51i)T+(−24.5−53.6i)T2 |
| 61 | 1+(1.40−0.643i)T+(39.9−46.1i)T2 |
| 67 | 1+(−2.03−14.1i)T+(−64.2+18.8i)T2 |
| 71 | 1+(6.01−0.864i)T+(68.1−20.0i)T2 |
| 73 | 1+(−13.9+4.10i)T+(61.4−39.4i)T2 |
| 79 | 1+(−1.15−0.739i)T+(32.8+71.8i)T2 |
| 83 | 1+(−6.21−7.17i)T+(−11.8+82.1i)T2 |
| 89 | 1+(6.34+2.89i)T+(58.2+67.2i)T2 |
| 97 | 1+(−3.24−2.81i)T+(13.8+96.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.95829897538232068935995516089, −12.71991526058025249032069050317, −11.91368242812691401116835330986, −10.40118004125477619741502054884, −9.759897317207274418110936947410, −8.460130170548704165902577841040, −7.71249699776801153223336948074, −4.82415942749462416984295940115, −4.00294090932685059375795407283, −2.27282752084962362412821926846,
2.88266816260284670210028246568, 4.72926229481682348132017256107, 6.40456715677746036514743919782, 7.72334660618335970756772908688, 8.340517423796097276391225870094, 9.256213579052269907285696975184, 11.06962585393885949498262365507, 12.40533598833556161628366404832, 13.75374961393653118608397078528, 14.23853046128078352346731319267