L(s) = 1 | + 3-s − 2·5-s + 9-s + 2·11-s + 13-s − 2·15-s + 19-s − 25-s + 27-s − 4·29-s − 9·31-s + 2·33-s − 3·37-s + 39-s + 10·41-s − 5·43-s − 2·45-s + 6·47-s − 12·53-s − 4·55-s + 57-s − 12·59-s + 10·61-s − 2·65-s + 5·67-s − 6·71-s + 3·73-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.603·11-s + 0.277·13-s − 0.516·15-s + 0.229·19-s − 1/5·25-s + 0.192·27-s − 0.742·29-s − 1.61·31-s + 0.348·33-s − 0.493·37-s + 0.160·39-s + 1.56·41-s − 0.762·43-s − 0.298·45-s + 0.875·47-s − 1.64·53-s − 0.539·55-s + 0.132·57-s − 1.56·59-s + 1.28·61-s − 0.248·65-s + 0.610·67-s − 0.712·71-s + 0.351·73-s + ⋯ |
Λ(s)=(=(9408s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(9408s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 7 | 1 |
good | 5 | 1+2T+pT2 |
| 11 | 1−2T+pT2 |
| 13 | 1−T+pT2 |
| 17 | 1+pT2 |
| 19 | 1−T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1+9T+pT2 |
| 37 | 1+3T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1+5T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1+12T+pT2 |
| 59 | 1+12T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1−5T+pT2 |
| 71 | 1+6T+pT2 |
| 73 | 1−3T+pT2 |
| 79 | 1+T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1+16T+pT2 |
| 97 | 1−6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.58183307195557815202854342196, −6.83816225784114151325296720078, −6.04873695495652424409089915829, −5.25829752501167341687747079033, −4.33520014774866337516677825582, −3.76817176104573041637374040110, −3.25325181654870950802440024349, −2.18110487084687669897456722275, −1.29454970090328798188294397361, 0,
1.29454970090328798188294397361, 2.18110487084687669897456722275, 3.25325181654870950802440024349, 3.76817176104573041637374040110, 4.33520014774866337516677825582, 5.25829752501167341687747079033, 6.04873695495652424409089915829, 6.83816225784114151325296720078, 7.58183307195557815202854342196