L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s + (−1 + i)7-s + 1.00i·9-s + 1.41i·11-s + 1.00i·15-s + 1.41·21-s + 1.00i·25-s + (0.707 − 0.707i)27-s + 1.41i·29-s + (1.00 − 1.00i)33-s + 1.41·35-s + (0.707 − 0.707i)45-s − i·49-s + (−1.41 + 1.41i)53-s + ⋯ |
L(s) = 1 | + (−0.707 − 0.707i)3-s + (−0.707 − 0.707i)5-s + (−1 + i)7-s + 1.00i·9-s + 1.41i·11-s + 1.00i·15-s + 1.41·21-s + 1.00i·25-s + (0.707 − 0.707i)27-s + 1.41i·29-s + (1.00 − 1.00i)33-s + 1.41·35-s + (0.707 − 0.707i)45-s − i·49-s + (−1.41 + 1.41i)53-s + ⋯ |
Λ(s)=(=(960s/2ΓC(s)L(s)(0.229−0.973i)Λ(1−s)
Λ(s)=(=(960s/2ΓC(s)L(s)(0.229−0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
960
= 26⋅3⋅5
|
Sign: |
0.229−0.973i
|
Analytic conductor: |
0.479102 |
Root analytic conductor: |
0.692172 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ960(287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 960, ( :0), 0.229−0.973i)
|
Particular Values
L(21) |
≈ |
0.4121616081 |
L(21) |
≈ |
0.4121616081 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.707+0.707i)T |
| 5 | 1+(0.707+0.707i)T |
good | 7 | 1+(1−i)T−iT2 |
| 11 | 1−1.41iT−T2 |
| 13 | 1+iT2 |
| 17 | 1−iT2 |
| 19 | 1−T2 |
| 23 | 1−iT2 |
| 29 | 1−1.41iT−T2 |
| 31 | 1−T2 |
| 37 | 1−iT2 |
| 41 | 1−T2 |
| 43 | 1−iT2 |
| 47 | 1+iT2 |
| 53 | 1+(1.41−1.41i)T−iT2 |
| 59 | 1+1.41T+T2 |
| 61 | 1−T2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+(1−i)T−iT2 |
| 79 | 1+T2 |
| 83 | 1+iT2 |
| 89 | 1+T2 |
| 97 | 1+(1+i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.44823527644084265993014830073, −9.466643786857875089208930327978, −8.788144031158073430955137884716, −7.72860544172485611019105759924, −7.04614727082797716696462624221, −6.15564799367901701608401138345, −5.23037029087958850839305820986, −4.44035228393569833582695394968, −2.97122021121797226514391073316, −1.63671808758740279470374265084,
0.43406240891863601879244889421, 3.12961762722282852526811288830, 3.66559386123698103083288515228, 4.57888716449978539701770448898, 5.98651646807274834141218568921, 6.45328345462200126512332886374, 7.40413740577371857177523711192, 8.376009124828956151724252789596, 9.497752166396538145735674479316, 10.19048561541531564472396213365